lua-users wiki: Lua Types Tutorial Seite 1von 5

. F8 lua-users
Lua Types Tutorial T,

Thisis abasic introduction to the variable types used by Lua when scripting. Each section introduces a different variable type. Please look at Tutorial Examples
for notes about the examples.

Numbers

Lua allows simple arithmetic using the usual operatorsto add, subtract, multiple and divide. We'll use the pri nt () function to print out the results of some
calculations. The brackets around the arguments are important and will cause an error if missed out.

> print(2+2)
4

> print(2-7)
-5

> print(7*8)
56

> print(7/8)
0.875

Notice that the numbers are not rounded into integers. They are floating point, or real numbers. We can assign values to variables using the = operator.

>x =7
> print(x)
-

The variable x is created when the number 7 is assigned to it. We use the pri nt () function again to print out the value of x. We can now use the valuein x for
other calculations.

>X =x*9

> print(x)

63

> print(x*2) -- will not change the value of x
126

> print(x)

63

http://lua-users.org/wiki/LuaTypesT utorial 23.04.2004



lua-users wiki: Lua Types Tutorial

Seite 2von 5

Notice how pri nt (x*2) does not change the value of x because it was not assigned using the = but x = x * 9 multiplesthe current value of x by 9 and stores

the new valuein x again.

For more information on Lua's number type you can look at the NumbersT utorial .

Strings
Lua also uses strings, or text variable types:

> print("hello")
hell o

We can assign strings to variables just like we can numbers:

> who = "Lua user"
> print (who)
Lua user

We can concatenate (join together) strings together using the . . operator between two strings.

> print("hello ")

hell o

> print("hello "™ .. who) -- the variable "who" was assigned above
hell o Lua user

> print (who)

Lua user

Notice that the . . operator does not change the value of who unless the = assignment operator is used, just like numbers.

> message = "hello " .. who
> print(message)
hell o Lua user

Unlike some other languages, you can not use the + operator to concatenate strings. i.e.:

> message = "hello " + who
stdin:1: attenpt to performarithmetic on a string val ue
stack traceback:

stdin:1: in main chunk

[C: ?

http://lua-users.org/wiki/LuaTypesT utorial

23.04.2004



lua-users wiki: Lua Types Tutorial Seite 3von 5

Tables

Lua also has a general purpose data type called atable. Tables can be used to store groups of objects. Y ou can store numbers, or strings, or other tablesin tables.
Tables are created using a pair of curly brackets {} . Let's create an empty table:

> x = {}
> print(x)
tabl e: 0035C910

When we display the value of atable variable using the built in pri nt function Luajust displaysthe fact that variable is atable, and unique identifier for that
table (i.e. its address in memory). We can print out the contents of atable but that comesin the TablesTutorial.

We can construct tables containing other objects, such as the numbers and strings described above, e.g.

> x = { value = 123, text = "hello" }
> print(x.val ue)

123

> print(Xx.text)

hel l o

We can print the values out using the notation: table.item. We can also put tables inside other tables.

>y = { const={ nane="Pi", value=3.1415927 }, const2={ nane="light speed", value=3e8 } }
> print(y.const.nane)

Pi

> print(y.const2.val ue)

300000000

Boolean

Boolean values have either the valuet rue or f al se. If avalueisnot true, it must be false and vice versa. The not operator can be placed before a boolean value
toinvertit.i.e. not trueisegual to fal se.

> X = true

> print(x)

true

> print(not x)

fal se

> print(not false)

http://lua-users.org/wiki/LuaTypesT utorial 23.04.2004



lua-users wiki: Lua Types Tutorial Seite 4von 5

true

Boolean values are used to represent the results of logic tests. The equals ==, and not equals ~= operators will return boolean values depending on the values
supplied to them.

> print(l1 == 0) -- test whether two nunbers are equa

fal se

> print(l == 1)

true

> print(l1 ~= 0) -- test whether two nunbers are not equa
true

> print(true ~= false) -- is true not equal to false?
true

Functions

In Lua, functions are assigned to variables, just like numbers and strings. Functions are created using the f unct i on keyword. Here we create a simple function
which will print afriendly message.

> function foo() print("hello") end -- declare the function
> foo() -- call the function

hell o

> print(foo) -- get the value of the variable "foo"

function: 0035D6ES

Notice we can print the value of the variable f oo and it displays (like tables) that the variable is a function, and has unique identifier for that particular function.
So, being avariable just like any other, we should be able to assign functions to variables, just like the other variables, and we can.

> x = function() print("hello") end
> x()

hell o

> print(x)

function: 0035EA20

The ability to do thisis because Lua has first class values. This means that all values are treated the same way. Thisis avery powerful and useful feature of Lua.

Dynamic typing

Y ou might have noticed that whilst we created the above variables, we did not have to specify which type of variable we were creating. For example,

http://lua-users.org/wiki/LuaTypesT utorial 23.04.2004



lua-users wiki: Lua Types Tutorial Seite 5von 5

1
"hel | o"
{ iteml="abc" }

a
b
c

In other languages, such as C, we have to specify the type of avariable when we create it. Aswell as not having to specify which type a particular variable is we
can also assign different value types to the same variable, e.g.

a=1
a = "hello"
a ={ iteml="abc" }

Thisis called dynamic typing. This means that you don't have to specify what type avariable is. The variable knows what type it is from the value, or object,
assigned to it.

nil values

Thisis aspecia value which means a variable has no value. If avariable has the value ni | then it has no value assigned to it and therefore will no longer exist
(or doesn't exist yet). By setting avariableto ni | you can delete avariable. e.g.

X = 2.5
print (x)
5

X = nil

print (x)
nil

VVNV YV

You can test to see if a variable exists by checking whether itsvalueisni | .

> print(x == nil)
true

> x =7

> print(x == nil)
fal se

> print(x)

-

FindPage - RecentChanges - preferences soURCER. RGE
edit - history onet
Last edited February 17, 2004 9:46 am PDT (diff)

http://lua-users.org/wiki/LuaTypesT utorial 23.04.2004



