

The for statement comes in two different flavours. One can be used to iterate through a numeric progression and the other can be used to iterate over functions
called iterators. The for statement is covered in section 2.4.5 of the Reference Manual.

Numeric progression

The numeric progression version of for has the following syntax:

for variable = from_exp , to_exp [, step_exp] do block end

The statement sets the value of the variable to from_exp before entering the for block. The block is only entered if variable has not reached the last value,
to_exp. This includes the first time the loop is iterated over. Each time the block exits step_exp is added to variable . Specifying the step expression is optional. If
it is not specified the value of 1 is used. For example,

> for i = 1,3 do print(i) end -- count from 1 to 3
1
2
3
> for i = 3,1 do print(i) end -- count from 3 to 1 in steps of 1. zero iterations!
> for i = 3,1,-1 do print(i) end -- count down from 3 to 1
3
2
1
> for i=1,0,-0.25 do print(i) end -- we're not limited to integers
1
0.75
0.5
0.25
0

Note the variable i will be local to the scope of the for loop. i.e.,

> print(i) -- after the above code
nil

For Tutorial
wiki

Seite 1 von 5lua-users wiki: For Tutorial

23.04.2004http://lua-users.org/wiki/ForTutorial

for i = e1,e2,e3 do end is equivalent to the following Lua code:

do
 local i, limit, step = tonumber(e1), tonumber(e2), tonumber(e3) or 1
 if not (i and limit and step) then error() end
 while (step>0 and i<=limit) or (step<=0 and i>=limit) do
 -- block code
 i = i + step
 end
end

Iterators

The second form of the for loop has the syntax:

for var {, var} in explist do block end

explist is evaluated once before the loop is entered. Its results are an iterator function (which sets the var values), a state (from which the values can be read),
and an initial value (from which to iterate onwards).

Iterating over tables

If we put a table in place of explist Lua will provide the correct explist for us. Each element in a table is represented by a key and value pair. Read the
TablesTutorial for more details about usage of tables. To print out all of the elements in a table we can do the following:

> table = { 3,7,10,17; banana="yellow", pi=3.14159 }
> for key,value in table do print(key,value) end
1 3
2 7
3 10
4 17
pi 3.14159
banana yellow

pairs(table)

Lua provides a pairs(table) function to create the explist information for us to iterate over a table. The pairs() function will allow iteration over key-value
pairs.

Seite 2 von 5lua-users wiki: For Tutorial

23.04.2004http://lua-users.org/wiki/ForTutorial

> for key,value in pairs(table) do print(key,value) end
1 3
2 7
3 10
4 17
pi 3.14159
banana yellow

ipairs(table)

The ipairs() function will allow iteration over index-value pairs. These are key-value pairs where the keys are indices into an array:

> for index,value in ipairs(table) do print(index,value) end
1 3
2 7
3 10
4 17

Notice how only the array part of the table is displayed because only these elements have index keys.

next()

The next(table [,index]) function helps iterate over a table. When given a table and an index it returns the next key-value pair from the table, e.g.,

> = next(table) -- index will be nil, the beginning
1 3
> = next(table,"pi")
banana yellow

The pairs() function returns an explist containing next() so we can iterate over tables. We can pass our own expression list to the for statement as follows:

> for key,value in next,table,nil do print(key,value) end
1 3
2 7
3 10
4 17
pi 3.14159
banana yellow

We pass next,table,nil as the expression list to the for statement. We are saying here that we want to use the iterator function next(), on the table called
"table", starting at nil (the beginning). The for statement keeps executing until the next() function returns nil (the end of the table).

Seite 3 von 5lua-users wiki: For Tutorial

23.04.2004http://lua-users.org/wiki/ForTutorial

io.lines()

Lua provides other useful iterators, like io.lines([filename]) in the io library. We can demonstrate this by creating a custom file containing some lines of
text.

> io.output(io.open("my.txt","w"))
> io.write("This is\nsome sample text\nfor Lua.")
> io.close()

We created a file called "my.txt", wrote three lines to it and closed it. Using the io line iterator is trivial:

> for line in io.lines("my.txt") do print(line) end
This is
some sample text
for Lua.

file:lines()

The io library provides another way to iterate over lines of a text file.

> file = assert(io.open("my.txt", "r"))
> for line in file:lines() do print(line) end
This is
some sample text
for Lua.
> file:close()

What are the differences with io.lines()?

You have to explicitely open and close the file. One advantage over this is that if the file cannot be opened, you can handle this failure gracefully. Here, the
assert has the same effect as io.lines: the interpreter stops with an error message pointing to the faulty line; but you can test for a nil value of file and do
something else.

Another advantage is that you can start the loop on any line:

file = assert(io.open("list.txt", "r"))
local line = file:read()
if string.sub(line, 1, 1) ~= '#' then
 ProcessLine(line) -- File doesn't start with a comment, process the first line
end

Seite 4 von 5lua-users wiki: For Tutorial

23.04.2004http://lua-users.org/wiki/ForTutorial

-- We could also loop on the first lines, while they are comment
-- Process the remainder of the file
for line in file:lines() do
 ProcessLine(line)
end
file:close()

Custom iterators

We can write our own iterators, similiar to next(), to iterate over any data sequence. This is covered in more detail in the IteratorsTutorial.

FindPage · RecentChanges · preferences
edit · history
Last edited April 17, 2004 10:33 am PDT (diff)

Seite 5 von 5lua-users wiki: For Tutorial

23.04.2004http://lua-users.org/wiki/ForTutorial

