
Lua 5.0 short reference (draft 2) - by Enrico Colombini <erix@erix.it> 2004 - based on material © Tecgraf, PUC-Rio - freely distributable under the Lua license available at http://www.lua.org.

The Lua language (v5.0)
Reserved identifiers and comments
and break do else endif end false
for function if in local nil not
or repeat return then true until while
_X... (where X = any uppercase letter)
-- Comment to end of line.
--[[...]] Multi-line comment
#! Ignored at the start of the first line (to make Unix-executable).

Types

"nil" "boolean" "number" "string" "table" "function" "thread" "userdata"
Note: for booleans, nil and false count as false, all the rest is true including 0 and "".

Strings and escape sequences
' ' " " [[]] string delimiters; [[]] can be multi-line, escape sequences are ignored.
\a (bell) \b (backspace) \f (form feed) \n (newline) \r (return)
\t (horiz. tab) \v (vert. tab) \\ (backslash) \" (d. quote) \' (quote)
\[(sq. bracket) \] (sq. bracket) \ddd (decimal)

Operators, decreasing precedence
^ (right-associative, math lib required)
not - (unary)
* /
+ -
.. (string concatenation, right-associative)
< > <= >= ~= ==
and (stops on false/nil, returns last evaluated value)
or (stops on true (not false/nil), returns last evaluated value)

Assignment and coercion
a = 5 Simple assignment.
a = “hi” Variables are not typed, they can hold different types.
a, b, c = 1, 2, 3 Multiple assignment.
a, b = b, a Swap values, because right side values are evaluated before assignment.
a, b = 4, 5, 6 Too many values, 6 is discarded.
a, b = “there” Too few values, nil is assigned to b.
a = nil Destroys a, its value will be eligible for garbage collection if unreferenced.
a = z If z is not defined it is nil, so nil is assigned to a (destroying it).
a = “3” + “2” Numbers expected, strings are converted to numbers (a = 5).
a = 3 .. 2 Strings expected, numbers are converted to strings (a = "32").

Control structures
do block end Block with local scope.
while exp do block end Loop as long as exp is true.
repeat block until exp Exits when exp becomes true.
if exp then block {elseif exp then block} [else block] end Conditional execution.
for var = start, end [, step] do block end Counter-based loop.
for vars in iterator do block end Iterator-based loop.
break Exits loop, must be last in block.

Table constructors
t = {} A new empty table.
t = {"yes", "no", "?"} Simple array, elements are t[1], t[2], t[3].
t = {[1] = "yes", [2] = "no", [3] = "?"} Same as line above.
t = {[-900] = 3, [+900] = 4} Sparse array, two elements (no space lost).
t = {x=5, y=10} Hash table, fields are t["x"], t["y"] or t.x, t.y.
t = {x=5, y=10; "yes", "no"} Mixed, fields / elements are t.x, t.y, t[1], t[2].
t = {msg = "choice", {"yes", "no", "?"}} Table containing a table as field.

Function definition
function name (args) body [return values] end Global function.
local function name (args) body [return values] end Function local to chunk.
f = function (args) body [return values] end Anonymous function.
function ([args,] ...) body [return values] end Variable args, passed as arg[], arg.n.
function t.name (args) body [return values] end Shortcut for t.name = function [...]
function obj:name (args) body [return values] end Object function getting extra arg self.

Function call
f (x) Simple call, possibly returning one or more values.
f "hello" Shortcut for f ("hello").
f 'goodbye' Shortcut for f ('goodbye').
f [[see you soon]] Shortcut for f ([[see you soon]]).
f {x = 3, y = 4} Shortcut for f ({x = 3, y = 4}).
t.f (x) Calling a function stored in the field f of table t.
x:move (2, -3) Object call, shortcut for x.move (x, 2, -3), x will be assigned to self.

Metatable operations (basic library required)
setmetatable (t, mt) Sets mt as metatable for t, unless t's metatable has a __metatable field.
getmetatable (t) Returns __metatable field of t's metatable, or t's metatable, or nil.
rawget (t, i) Gets t[i] of a table without invoking metamethods.
rawset (t, i, v) Sets t[i] = v on a table without invoking metamethods.
rawequal (t1, t2) Returns boolean (t1 == t2) without invoking metamethods.

Metatable fields (for tables and userdata)

__add Sets handler h (a, b) for '+'.
__sub Sets handler h (a, b) for binary '-'.
__mul Sets handler h (a, b) for '*'.
__div Sets handler h (a, b) for '/'.
__pow Sets handler h (a, b) for '^'.
__unm Sets handler h (a) for unary '-'.
__concat Sets handler h (a, b) for '..'.
__eq Sets handler h (a, b) for '==', '~='.
__lt Sets handler h (a, b) for '<', '>' and possibly '<=', '>=' (if no __le).
__le Sets handler h (a, b) for '<=', '>='.
__index Sets handler h (t, k) for non-existing field access.
__newindex Sets handler h (t, k) for new field assignment.
__call Sets handler h (f, ...) for function call (using the object as a function).
__tostring Sets handler h (a) to convert to string, e.g. for print ().
__gc Sets finalizer h (ud) for userdata (can be set from the C side only).
__mode Table mode: 'k' = weak keys, 'v' = weak values, 'kv' = both.
__metatable Sets a value to be returned by getmetatable ().

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 1/6

Lua 5.0 short reference (draft 2) - by Enrico Colombini <erix@erix.it> 2004 - based on material © Tecgraf, PUC-Rio - freely distributable under the Lua license available at http://www.lua.org.

The basic library
Environment and global variables
getfenv ([f]) If f is a function, returns its environment; if f is a number, returns the

environment of function at level f (1 = current [default], 0 = global);
if the environment has a field __fenv, returns that instead.

setfenv (f, t) Sets environment for function f or function at level f (0 = current thread);
if the original environment has a field __fenv, raises an error.

_G Variable whose value is the global environment.
_VERSION Variable containing the interpreter's version, e.g. "Lua 5.0".

Loading and executing
require (pkgname) Loads a package, raises error if cannot load it, returns true if cached.
dofile ([filename]) Loads and executes the contents of filename [default: standard input];

returns its returned values.
loadfile (filename) Loads the contents of filename, do not execute it;

returns compiled chunk as function, or nil and error message.
loadstring (s [, n]) Loads the contents of string s, do not execute it, set chunk name = n;

returns compiled chunk as function, or nil and error message.
loadlib (lib, func) Links to the dynamic library named lib (e.g. .so or .dll);

returns function named func, or nil and error message.
pcall (f [, args]) Calls function f in protected mode;

returns true and results if OK, else false and error message.
xpcall (f, h) As pcall () but passes error handler h instead of extra args;

returns as pcall () but with the result of h () as error message, if any (use
debug.traceback () from the debug library for extended error info).

Simple output and error feedback
print (args) Prints each of the passed args to stdout using tostring (see below).
error (msg [, n]) Terminates the program or the last protected call (e.g. pcall ()) with error

message msg quoting level n [default: 1, current function].
assert (v [, msg]) Calls error (msg) if v is nil or false [default msg: "assertion failed!"].

 Information and conversion
type (x) Returns the type of x as a string (e.g. "nil", "string"); see Types.
tostring (x) Converts x to a string, using t's metatable's __tostring if available.
tonumber (x [, b]) Converts string x representing a number in base b [2..36, default: 10] to a

number, or nil if invalid; for base 10 accepts full format (e.g. "1.5e6").
unpack (t) Returns t[1]..t[n] (n = getn(t), see Table library) as separate values.

Iterators
ipairs (t) Returns an iterator getting index, value pairs of array t in num. order.
pairs (t) Returns an iterator getting key, value pairs of table t in no order.
next (t [, inx]) If inx is nil [default] returns first index, value pair of table t; if inx is the

previous index returns next index, value pair (nil when finished).

Garbage collection
gcinfo () Returns dynamic memory usage and garbage collector's threshold, in KB.
collectgarbage ([k]) Sets garbage collector's threshold at k KB [default: 0], collects garbage

if k is below the current dynamic memory usage (always if k is 0).

Coroutines
coroutine.create (f) Creates a new coroutine with Lua function f as body, returns it.
coroutine.resume (co, args) Starts or continues running coroutine co, passing args to it;

returns true (and possibly values) if co calls coroutine.yield ()
or terminates, returns false and a message in case of error.

coroutine.yield (args) Suspends execution of the calling coroutine (not from within C
functions, metamethods or iterators), any args become extra
return values of coroutine.resume ().

coroutine.status (co) Returns the status of coroutine co as a string: either "running",
"suspended" or "dead".

coroutine.wrap (f) Creates a new coroutine with Lua function f as body and returns
a function; this function will act as coroutine.resume () without
the first arg and the first return value, propagating any errors.

The table library
Tables as arrays (lists)
table.insert (t, [i,] v) Inserts v at numerical index i [default: after the end] in table t ,

increments table size using table.setn ().
table.remove (t [, i]) Removes element at numerical index i [default: last element]

from table t, decrements table size using table.setn (),
returns the removed element or no value on empty table.

table.getn (t) Returns value of t.n, or value previously set by table.setn (), or
table size as last consecutive numerical index starting from 1.

table.setn (t, n) Changes t.n if it exists, or sets table size to be returned by
table.getn ().

table.sort (t [, cf]) Sorts (in-place) elements from t[1] to t[table.getn ()], using
compare function cf (e1, e2) [default: '<'].

table.concat (t [, s [, i [, j]]]) Returns a single string made by concatenating table elements t[i]
to t[j] [default: i =1, j = table.getn ()] separated by string s;
returns empty string if no given elements or i > j.

Iterating on table contents
table.foreach (t, f) Calls function f (k, v) for every field of table t in no order,

passing key k and value v = t[k], stops if f () returns non-nil;
returns non-nil value returned from f (), or no value.

table.foreachi (t, f) Calls function f (i, v) for i = 1 to table.getn (), passing index i
and value v = t[i], stops if f () returns non-nil;
returns non-nil value returned from f (), or no value.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 2/6

Lua 5.0 short reference (draft 2) - by Enrico Colombini <erix@erix.it> 2004 - based on material © Tecgraf, PUC-Rio - freely distributable under the Lua license available at http://www.lua.org.

The math library
Basic operations
math.abs (x) Returns the absolute value of x.
math.mod (x, y) Returns the remainder of x / y as a rounded-down integer, for y ~= 0.
math.floor (x) Returns x rounded down to the nearest integer.
math.ceil (x) Returns x rounded up to the nearest integer.
math.min (args) Returns the minimum value from the args received.
math.max (args) Returns the maximum value from the args received.

Exponential and logarithmic
math.sqrt (x) Returns the square root of x, for x >= 0.
math.pow (x, y) Returns x raised to the power of y, i.e. x^y; if x < 0, y must be

integer.
__pow (x, y) Global function added by the math library to make operator '̂ ' work.
math.exp (x) Returns e (base of natural logs) raised to the power of x, i.e. e^x.
math.log (x) Returns the natural logarithm of x, for x >= 0.
math.log10 (x) Returns the base-10 logarithm of x, for x >= 0.

Trigonometrical
math.deg (a) Converts angle a from radians to degrees.
math.rad (a) Converts angle a from degrees to radians.
math.pi Constant containing the value of PI.
math.sin (a) Returns the sine of angle a (measured in radians).
math.cos (a) Returns the cosine of angle a (measured in radians).
math.tan (a) Returns the tangent of angle a (measured in radians).
math.asin (x) Returns the arc sine of x in radians, for x in [-1, 1].
math.acos (x) Returns the arc cosine of x in radians, for x in [-1, 1].
math.atan (x) Returns the arc tangent of x in radians.
math.atan2 (y, x) Similar to math.atan (y / x) but with quadrant and allowing x = 0.

Splitting on powers of 2
math.frexp (x) Splits x into normalized fraction and exponent of 2, returns both.
math.ldexp (x, y) Returns x * (2 ^ y) with x = normalized fraction, y = exponent of 2.

Pseudo-random numbers
math.random ([n [, m]) Returns a pseudo-random number in range [0, 1) if no arguments, in

range [1, n] if n is given, in range [n, m] if both args are passed.
math.randomseed (n) Sets a seed n for random sequence (same seed = same sequence).

The string library
Basic operations
string.len (s) Returns the length of string s, including embedded zeros.
string.sub (s, i [, j]) Returns the substring of s from position i to j [default: -1] inclusive.
string.rep (s, n) Returns a string made of n concatenated copies of string s.
string.upper (s) Returns a copy of s converted to uppercase according to locale.
string.lower (s) Returns a copy of s converted to lowercase according to locale.

Character codes
string.byte (s [, i]) Returns the platform-dependent numerical code (e.g. ASCII) of

character at position i [default: 1] in string s, or nil if invalid i.
string.char (args) Returns a string made of the characters whose platform-dependent

numerical codes are passed as args.

Formatting
string.format (s [, args]) Returns a copy of s where formatting directives beginning with '%'

are replaced by the value of arguments args, in the same order.
(see Formatting directives below)

Finding, replacing, iterating
string.find (s, p [, i [, d]]) Returns first and last position of pattern p in string s, or nil if not

found, starting search at position i [default: 1]; returns parenthesized
'captures' as extra results. If d is true, treat pattern as plain string.
(see Patterns below)

string.gfind (s, p) Returns an iterator getting next occurrence of pattern p (or its
captures) in string s as substring(s) matching the pattern.
(see Patterns below)

string.gsub (s, p, r [, n]) Returns a copy of s with up to n [default: 1] occurrences of pattern p
(or its captures) replaced by r if r is a string (r can include
references to captures in the form %n), or by calling r () if it is a
function: r () will receive captured substrings and should return the
replacement string;
returns as second result the number of substitutions made.
(see Patterns below)

Function storage
string.dump (f) Returns a binary representation of function f, for later use with

loadstring (). f must be a Lua function with no upvalues.

Note String indexes go from 1 to string.len (s), from end of string if
negative (index -1 refers to the last character).

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 3/6

Lua 5.0 short reference (draft 2) - by Enrico Colombini <erix@erix.it> 2004 - based on material © Tecgraf, PUC-Rio - freely distributable under the Lua license available at http://www.lua.org.

Formatting directives for string.format
% [flags] [field_width] [.precision] type

Formatting field types
%d Decimal integer.
%o Octal integer.
%x Hexadecimal integer, uppercase if %X.
%f Floating-point in the form [-]nnnn.nnnn.
%e Floating-point in exp. form [-]n.nnnn e [+|-]nnn, uppercase if %E.
%g Floating-point as %e if exp. < -4 or >= precision, else as %f; uppercase if %G.
%c Character having the (system-dependent) code passed as integer.
%s String with no embedded zeros.
%q String between double quotes, with all special characters escaped.
%% The '%' character.

Formatting flags
- Left-justifies in field_width [default: right-justify].
+ Prepends sign (applies to numbers).
(space) Prepends sign if negative, else blank space.
Adds "0x" before %x, force decimal pt. for %e, %f, leaves trailing zeros for %g.

Formatting field width
n Puts at least n characters, pad with blanks.
0n Puts at least n characters, left-pad with zeros

Formatting precision
.n Puts at least n digits for integers; rounsd to n decimals for floating-point; puts no

more than n characters for strings.

Formatting examples
string.format ("results: %d, %d", 13, 27) results: 13, 27
string.format ("<%5d>", 13) < 13>
string.format ("<%-5d>", 13) <13 >
string.format ("<%05d>", 13) <00013>
string.format ("<%06.3d>", 13) < 013>
string.format ("<%f>", math.pi) <3.141593>
string.format ("<%e>", math.pi) <3.141593e+00>
string.format ("<%.4f>", math.pi) <3.1416>
string.format ("<%9.4f>", math.pi) < 3.1416>
string.format ("<%c>", 64) <@>
string.format ("<%s.4>", "goodbye") <good>
string.format("%q", [[she said "hi"]]) "she said \"hi\""

Patterns and pattern items
General pattern format: pattern_item [pattern_items]

cc Matches a single character in the class cc (see Pattern character classes below).
cc* Matches zero or more characters in the class cc; matchest longest sequence.
cc- Matches zero or more characters in the class cc; matchest shortest sequence.
cc+ Matches one or more characters in the class cc; matchest longest sequence.
cc? Matches zero or one character in the class cc.
%n (n = 1..9) Matches the n-th captured string (see Pattern captures).
%bxy Matches the balanced string from character x to character y (e.g. nested parenthesis).
^ Anchor spattern to start of string, must be the first item in the pattern.
$ Anchor spattern to end of string, must be the last item in the pattern.

Pattern captures
(sub_pattern) Stores substring matching sub_pattern as capture %1..%9, in order.
() Stores current string position as capture %1..%9, in order.

Pattern character classes
. Any character.
%a Any letter. %A Any non-letter.
%c Any control character. %C Any non-control character.
%d Any digit. %D Any non-digit.
%l Any lowercase letter. %L Any non-(lowercase letter).
%p Any punctuation character %P Any non-punctuation character
%s Any whitespace character. %S Any non-whitespace character.
%u Any uppercase letter. %U Any non-(uppercase letter).
%w Any alphanumeric character. %W Any non-alphanumeric character.
%x Any hexadecimal digit. %X Any non-(hexadecimal digit).
%z The zero character. %Z Any non-zero character.
%x (x = symbol) The symbol itself.
x If x not in ^$()%.[]*+-? the character

itself.
[set] Any character in any of the given

classes, can also be a range [c1-c2].
[^set] Any character not in set.

Pattern examples
string.find("Lua is great!", "is") 5 6
string.find("Lua is great!", "%s") 4 4
string.gsub("Lua is great!", "%s", "-") Lua-is-great! 2
string.gsub("Lua is great!", "[%s%l]", "*") L***********! 11
string.gsub("Lua is great!", "%a+", "*") * * *! 3
string.gsub("Lua is great!", "(.)", "%1%1") LLuuaa iiss ggrreeaatt!! 13
string.gsub("Lua is great!", "%but", "") L! 1
string.gsub("Lua is great!", "^.-a", "LUA") LUA is great! 1
string.gsub("Lua is great!", "^.-a",
 function (s) return string.upper(s) end) LUA is great! 1

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 4/6

Lua 5.0 short reference (draft 2) - by Enrico Colombini <erix@erix.it> 2004 - based on material © Tecgraf, PUC-Rio - freely distributable under the Lua license available at http://www.lua.org.

The I/O library
Complete I/O
io.open (fn [, m]) Opens file with name fn in mode m: "r" = read [default], "w" = write", "a"

= append, "r+" = update-preserve, "w+" = update-erase, "a+" = update-
append (add trailing "b" for binary mode on some systems),
returns a file object (an userdata with a C handle) usable with ':' syntax.

file:close () Closes file.
file:read (formats) Returns a value from file for each of the passed formats: "*n" = reads a

number, "*a" = reads the whole file as a string from current position ("" at
end of file), "*l" = reads a line (nil at end of file) [default], n = reads a
string of up to n characters (nil at end of file).

file:lines () Returns an iterator function reading line-by-line from file; the iterator
does not close the file when finished.

file:write (values) Write each of the values (strings or numbers) to file, with no added
separators. Numbers are written as text, strings can contain binary data (in
this case, file may need to be opened in binary mode on some systems).

file:seek ([p] [, of]) Sets the current position in file relative to p ("set" = start of file [default],
"cur" = current, "end" = end of file) adding offset of [default: zero];
returns the new current position in file.

file:flush () Writes to file any data still held in memory buffers.

Simple I/O
io.input ([file]) Sets file as default input file; file can be either an open file object or a file

name; in the latter case the file is opened for reading in text mode;
returns a file object, the current one if no file given; raises error on failure.

io.output ([file]) Sets file as default output file (the current output file is not closed); file
can be either an open file object or a file name; in the latter case the file is
opened for writing in text mode;
returns a file object, the current one if no file given; raises error on failure.

io.close ([file]) Closes file (a file object) [default: closes the default output file].
io.read (formats) Reads from the default input file, same usage as file:read () above.
io.lines ([fn]) Opens the file with name fn for reading and returns an iterator function

reading from it line-by-line; the iterator closes the file when finished;
if no fn given, returns an iterator reading lines from the default input file.

io.write (values) Writes to the default output file, same usage as file:write () above.
io.flush () Writes to the default output file any data still held in memory buffers.

Standard files and utility functions
io.stdin Predefined input file object.
io.stdout Predefined output file object.
io.stderr Predefined error output file object.
io.type (x) Returns the string "file" if x is an open file, "closed file" if x is a closed

file, nil if x is not a file object.
io.tmpfile () Returns a file object for a temporary file (deleted when program ends).

Note: the I/O functions return nil and an error message on failure, unless otherwise stated;
passing a closed file object raises an error instead.

The operating sytem library
Date/time
os.clock () Returns the approximated CPU time from the start of the program, in

seconds (measurement criteria may vary between systems).
os.time ([tt]) Returns a system-dependent number representing date/time described by

table tt [default: current]. tt must have fields year, month, day; can have
fields hour, min, sec, isdst (daylight saving, boolean). On many systems
the returned value is a number of seconds from a fixed date/time.

os.date ([fmt [, t]]) Returns a table or a string describing date/time t, that should be a value
returned by os.time () [default: current date/time], according to the format
string fmt [default: default: date/time according to locale settings];
if fmt is "*t" or "!*t", returns a table with fields year (nnnn), month
(1..12), day (1..31), hour (0..23), min (0..59), sec (0..61), wday (1..7,
Sunday = 1), yday (1..366), isdst (true = daylight saving),
else returns the fmt string with time formatting directives beginning with
'%' replaced according to Time formatting directives (see below);
in either case a leading "!" requests UTC (Coordinated Universal Time).

os.difftime (t2, t1) Returns the difference between two values returned by os.time ().

System interaction
os.execute (cmd) Calls a system shell to execute the string cmd as a command;

returns a system-dependent status code.
os.exit ([code]) Terminates the program returning code [default: success].
os.getenv (var) Returns a string with the value of the environment variable named var, or

nil if no such variable exists.
os.setlocale (s [, c]) Sets the locale described by string s for category c: "all", "collate",

"ctype", "monetary", "numeric" or "time" [default: "all"];
returns the name of the new locale, or nil if it cannot be set.

os.remove (fn) Deletes the file named fn; in case of error returns nil and error description.
os.rename (of, nf) Renames file of to nf ; in case of error returns nil and error description.
os.tmpname () Returns a string usable as name for a temporary file; subject to possible

name conflicts, use io.tmpfile () instead.

Time formatting directives (most used, portable features):
%c Date/time (locale).
%x Date only (locale). %X Time only (locale).
%y Year (nn). %Y Year(nnnn).
%j Day of year (001..366).
%m Month (01..12).
%b Abbreviated month name (locale). %B Full month name (locale).
%d Day of month (01..31).
%U Week number (01..53), Sunday-based. %W Week number (01..53) Monday-based.
%w Weekday (0..6), 0 is Sunday.
%a Abbreviated weekday name (locale). %A Full weekday name (locale).
%H Hour (00..23). %I Hour (01..12).
%p Either AM or PM.
%M Minute (00..59).
%S Second (00..61).
%Z Time zone name, if any.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 5/6

Lua 5.0 short reference (draft 2) - by Enrico Colombini <erix@erix.it> 2004 - based on material © Tecgraf, PUC-Rio - freely distributable under the Lua license available at http://www.lua.org.

The debug library
Basic functions
debug.debug () Enters interactive debugging shell (type cont to exit);local

variables cannot be accessed directly.
debug.getinfo (f [, w]) Returns a table with information for function f or for function at

level f [1 = caller], or nil if invalid level (see Result fields for
getinfo below); characters in string w select one or more groups
of fields [default: all] (see Options for getinfo below).

debug.getlocal (n, i) Returns name and value of local variable at index i (from 1, in
order of appearance) of the function at stack level n (1= caller);
returns nil if i is out of range, raises error if n is out of range.

debug.getupvalue (f, i) Returns name and value of upvalue at index i (from 1, in order of
appearance) of function f; returns nil if i is out of range.

debug.traceback ([msg]) Returns a string with traceback of call stack, prepended by msg.

Changing hidden values
debug.setlocal (n, i, v) Assigns value v to the local variable at index i (from 1, in order

of appearance) of the function at stack level n (1= caller); returns
nil if i is out of range, raises error if n is out of range.

debug.setupvalue (f, i, v) Assigns value v to the upvalue at index i (from 1, in order of
appearance) of function f; returns nil if i is out of range.

Hooks
debug.sethook ([h, m [, n]]) Sets function h as hook, called for events given in string (mask)

m: "c" = function call, "r" = function return, "l" = new code line;
also, a number n will call h () every n instructions;
h () will receive the event type as first argument: "call", "return",
"tail return", "line" (line number as second argument) or "count";
use debug.getinfo (2) inside h () for info (not for "tail_return").

debug.gethook () Returns current hook function, mask and count set with
debug.sethook ().

Note: the debug library functions are inefficient and should not be used in normal operation.

Result fields for debug.getinfo
source Name of file (prefixed by '@') or string where the function was defined.
short_src Short version of source, up to 60 characters.
linedefined Line of source where the function was defined.
what "Lua" = Lua function, "C" = C function, "main" = part of main chunk.
name Name of function, if available, or a reasonable guess if possible.
namewhat Meaning of name: "global", "local", "method", "field" or "".
nups Number of upvalues of the function.
func The function itself.

Options for debug.getinfo (characters for argument w)

n Returns fields name and namewhat.
f Returns field func.
S Returns fields source, short_src, what and linedefined.
l Returns field currentline.
u Returns field nup.

The stand-alone interpreter
Command line syntax
lua [options] [script [arguments]]

Options
- Loads and executes script from standard input (no args allowed).
-e stats Executes the Lua statements contained in the literal string stats, can be used

multiple times on the same line.
-l filename Requires filename (loads and executes it if not already done).
-i Enters interactive mode after loading and executiong script.
-v Prints version information.
-- Stops parsing options.

Recognized environment variables
LUA_INIT If it contains a string in the form @filename loads and executes filename, else

executes the string itself.
_PROMPT Sets the prompt for interactive mode.

Special Lua variables
arg nil if no arguments on the command line, else a table containing command line

arguments starting from arg[1] while arg.n is the number of arguments; arg
[0] holds the script name as given on the command line; arg[-1] and lower
indexes contain the fields of the command line preceding the script name.

_PROMPT Contains the prompt for interactive mode; can be changed by assigning to it.

The compiler
Command line syntax
luac [options] [scripts]

Options
- Compiles from standard input.
-l Produces a listing of the compiled bytecode.
-o filename Sends output to filename [default: luac.out].
-p Performs syntax and integrity checking only, does not output bytecode.
-s Strips debug information; line numbers and local names are lost.
-v Prints version information.
-- Stops parsing options.

Note: compiled chunks are portable on machines having the same word size.

Acknowledgments

I am grateful to all people that contributed with notes and suggestions, including John
Belmonte, Albert-Jan Brouwer, Tiago Dionizio, Marius Gheorghe, Asko Kauppi, Philippe
Lhoste, Virgil Smith, Ando Sonenblick, Nick Trout and of course Roberto Ierusalimschy,
whose "Lua 5.0 Reference Manual" and " Programming in Lua" have been my main sources of
Lua lore.

Lua is a free language designed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes at Tecgraf, PUC-Rio, Brazil page 6/6

