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1  Introduction
This is a no-frills introduction to the instruction set of the Lua 5 virtual machine. Compared
to Perl or Python,  the compactness of Lua makes it  relatively easier for someone to peek
under  the hood and  understand  its  internals.  I  think  that one  cannot  completely  grok a
scripting language, or any complex system for that matter, without slitting the animal open
and examining  the entrails,  organs and other yucky stuff that isn’t  normally seen.  So this
document is supposed to help with the “peek under the hood” bit.

Output from ChunkSpy (URL: http://luaforge.net/projects/chunkspy/ ), a Lua 5
binary chunk disassembler which I wrote while studying Lua internals, was used to generate
the examples  shown in  this  document.  The brief  disassembly mode of ChunkSpy is  very
similar to the output of the listing mode of luac , so you do not need to learn a new listing
syntax. ChunkSpy can be downloaded from LuaForge (URL: http://luaforge.net/ ); it
is licensed under the same type of MIT-style license as Lua 5 itself.

ChunkSpy has an interactive  mode: you can enter  a source chunk  and get  an immediate
disassembly. This allows you to use this document as a tutorial by entering the examples into
ChunkSpy and seeing the results yourself. The interactive mode is also very useful when you
are exploring the behaviour of the Lua code generator on many short code snippets.

This is a quick introduction, so it isn’t intended to be a comprehensive or expert treatment of
the Lua virtual machine (from this point on, “Lua” refers to “Lua 5” unless otherwise stated)
or its instructions. It is intended to be a simple, easy-to-digest beginner’s guide to the Lua
virtual machine instruction set – it won’t do cartwheels or blow smoke rings.

The objective of this introduction is to cover all the Lua virtual machine instructions and the
structure of Lua 5 binary chunks with a minimum of fuss. Then, if you want more detail, you
can use luac  or ChunkSpy to study non-trivial chunks of code, or you can dive into the Lua
source code itself for the real thing.

This is currently a draft, and I am not a Lua internals expert. So feedback is welcome. If you
find any errors, or if you have anything to contribute please send me an e-mail (to khman AT
users.sf.net or mkh AT pl.jaring.my) so that I can correct it. Thanks.
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2  Lua Instruction Basics
The Lua virtual machine instruction set we will look at is a particular implementation of the
Lua language. It is by no means the only way to skin the chicken. The instruction set just
happens to be the way the authors of Lua chose to implement version 5 of Lua. The following
sections are based on the instruction set used in Lua 5.0.2. The instruction set might change in
the future – do not expect it to be set in stone. This is because the implementation details of
virtual  machines  are  not  a  concern  to  most  users  of  scripting  languages.  For  most
applications, there is no need to specify how bytecode is generated or how the virtual machine
runs,  as long as the language works as advertised.  So remember  that  there is  no  official
specification of the Lua virtual machine instruction set, there is  no need for one; the only
official specification is of the Lua language.

In the course of studying  disassemblies  of Lua binary chunks,  you will  notice that  many
generated instruction  sequences  aren’t  as perfect  as you would  like  them to  be.  This  is
perfectly normal from an engineering standpoint. The canonical Lua implementation is not
meant to be an optimizing bytecode compiler or a JIT compiler. Instead it is supposed to load,
parse and run Lua source code efficiently. It is the totality of the implementation that counts.
If you really need the performance, you are supposed to drop down into native C functions
anyway.

Lua instructions have a fixed size, 32 bits by default. Instructions are manipulated using the
platform’s  native  integer  data  type,  which  is  usually  a  32-bit  signed  integer  on  32-bit
machines. In binary chunks, endianness is significant, but while in memory, an instruction can
be portably decoded or encoded in C using the usual integer shift  and mask operations. The
details can be found in lopcodes.h .

There are three instruction types and 35 opcodes (numbered 0 through 34) are currently in use
as of Lua 5.0.2. The instruction types are enumerated as iABC, iABx,  iAsBx,  and may be
visually represented as follows:

Lua 5 Instruction Formats

Instructions are encoded with unsigned integer fields, except for sBx. Field sBx can represent
negative numbers, but it doesn’t use 2s complement. Instead, it has a bias equal to half the
maximum integer that can be represented by its unsigned counterpart, Bx. For a field size of
18 bits, Bx can hold a maximum integer value of 262143, and so the bias is 131071. A value
of -1 will be encoded as (-1 + 131071) or 131070 or 1FFFE in hexadecimal.

Fields A, B and C usually refers to register numbers (I’ll use the term “register” because of its
similarity  to  processor  registers).  Although  field  A  is the  target  operand  in  arithmetic
operations, this rule isn’t always true for other instructions. A register is really an index into
the current stack frame, register 0 being the bottom-of-stack position.
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Unlike the Lua C API, negative indices (counting from the top of stack) are not supported.
For some instructions, where the top of stack may be required, it  is encoded as a special
operand value. Local variables are equivalent to certain registers in the current stack frame,
while dedicated opcodes allow read/write of globals and upvalues.

Beyond a certain threshold, a value in fields B or C may become an encoding of the number
of a constant in the constant pool of a function. By default, Lua has a maximum stack frame
size of 250. This  is  encoded as  MAXSTACK  in  llimits.h . So, a value of 251 in field  B
means that the operand is constant number 1 from the constant pool.

The maximum stack frame size in turn limits the maximum number of locals, and the limit is
set at 200, encoded as MAXVARS in  llimits.h . It is a useful bit  of information to know,
especially if  you are doing something in Lua that pushes its capabilities to the limit.  Other
limitations found in llimits.h include the maximum number of upvalues (32), encoded as
MAXUPVALUES,  and the maximum number  of parameters in  a function (100), encoded as
MAXPARAMS.

A summary of the Lua 5 virtual machine instruction set is as follows:

Opcode Name Description
  0 MOVE Copy a value between registers
  1 LOADK Load a constant into a register
  2 LOADBOOL Load a boolean into a register
  3 LOADNIL Load nil values into a range of registers
  4 GETUPVAL Read an upvalue into a register
  5 GETGLOBAL Read a global variable into a register
  6 GETTABLE Read a table element into a register
  7 SETGLOBAL Write a register value into a global variable
  8 SETUPVAL Write a register value into an upvalue
  9 SETTABLE Write a register value into a table element
10 NEWTABLE Create a new table
11 SELF Prepare an object method for calling
12 ADD Addition
13 SUB Subtraction
14 MUL Multiplication
15 DIV Division
16 POW Exponentiation
17 UNM Unary minus
18 NOT Logical NOT
19 CONCAT Concatenate a range of registers
20 JMP Unconditional jump
21 EQ Equality test
22 LT Less than test
23 LE Less than or equal to test
24 TEST Test for short-circuit logical and and or evaluation
25 CALL Call a closure
26 TAILCALL Perform a tail call
27 RETURN Return from function call
28 FORLOOP Iterate a numeric for loop
29 TFORLOOP Iterate a generic for loop
30 TFORPREP Initialization for a generic for loop
31 SETLIST Set a range of array elements for a table
32 SETLISTO Set a variable number of table elements
33 CLOSE Close a range of locals being used as upvalues
34 CLOSURE Create a closure of a function prototype
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3  Really Simple Chunks
Before heading  into binary chunk and virtual machine instruction details,  this  section will
demonstrate briefly how ChunkSpy can be used to explore Lua 5 code generation. All  the
examples in this document were produced using ChunkSpy 0.9.4.

First, start ChunkSpy in interactive mode (user input is set in bold):

$ lua ChunkSpy.lua --interact
ChunkSpy: A Lua 5 binary chunk disassembler with no  dependencies
Version 0.9.4 (20041121)  Copyright (c) 2004 Kein-H ong Man
The COPYRIGHT file describes the conditions under w hich this
software may be distributed (basically a Lua 5-styl e license.)

Type 'exit' or 'quit' to end the interactive sessio n. 'help' displays
this message. ChunkSpy will attempt to turn anythin g else into a
binary chunk and process it into an assembly-style listing.
A '\' can be used as a line continuation symbol; th is allows multiple
lines to be strung together.

>

We’ll start with the shortest possible binary chunk that can be generated:

>do end
; source chunk: (interactive mode)
; x86 standard (32-bit, little endian, doubles)

; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
[1] return     0   1      
; end of function

ChunkSpy will  treat your keyboard input as a small chunk of Lua source code. The library
function string.dump()  is first used to generate a binary chunk string, then ChunkSpy will
disassemble that string and give you a brief assembly language-style output listing.

Some features of the listing: Comment lines are prefixed by a semicolon. The header portion
of the binary chunk is not displayed with the brief style. Data or header information that isn’t
an instruction is shown as an assembler directive with a dot prefix. luac -style comments are
generated for some instructions, and the instruction location is in square brackets.

A “do end ” generates a single RETURN instruction and does nothing else. There are no
parameters, locals, upvalues or globals. For the rest of the disassembly listings shown in this
document,  we  will  omit  some  common  header  comments  and  show  only  the  function
disassembly part. Instructions will be referenced by its marked position, e.g. line [1]. Here is
another very short chunk:

>return
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
[1] return     0   1      
[2] return     0   1      
; end of function
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A RETURN instruction is generated for every return in the source. The first RETURN (line
[1]) is  generated by the  return  keyword, while  the second RETURN (line  [2]) is  always
added by the code generator. This isn’t a problem, because the second RETURN never gets
executed anyway, and only 4 bytes is  wasted. Perfect generation of RETURN instructions
requires basic block analysis, and it is not done because there is no performance penalty for
an extra RETURN, only a negligible memory penalty.

Notice in these examples, the minimum stack size is 2, even when the stack isn’t used. The
next snippet assigns a constant value of 6 to the global variable a:

>a=6
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.const  "a"  ; 0
.const  6  ; 1
[1] loadk      0   1        ; 6
[2] setglobal  0   0        ; a
[3] return     0   1      
; end of function

All string and number constants are pooled on a per-function basis, and instructions refer to
them using an index value which starts from 0. Global variable names need a constant string
as well, because globals are maintained as a table. Line [1] loads the value 6 (with an index to
the constant pool of 1) into register 0, then line [2] sets the global table with the constant “a”
(constant index 0) as the key and register 0 (holding the number 6) as the value.

If we write the variable as a local, we get:

>local a="hello"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.const  "hello"  ; 0
[1] loadk      0   0        ; "hello"
[2] return     0   1      
; end of function

Local variables  reside in  the stack,  and they occupy a stack (or register)  location for  the
duration of their existence. The scope of a local variable is specified by a starting program
counter  location  and  an  ending  program counter  location;  this  is  not  shown  in  a  brief
disassembly listing.

The local table in the function tells the user that register 0 is variable  a. This information
doesn’t  matter  to  the  VM,  because  it  needs  to  know  register  numbers  only  –  register
allocation was supposed to have been properly done by the code generator. So LOADK in
line [1] loads constant 0 (the string “hello”) into register 0, which is the local variable  a. A
stripped binary chunk will not have local variable names for debugging.

Next we will take a look at the structure of Lua 5 binary chunks.
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4  Lua Binary Chunks
Lua can dump functions as binary chunks, which can then be written to a file, loaded and run.
Binary chunks behave exactly like the source code from which they were compiled.

A binary chunk consist  of two parts: a header block and a top-level function. The header
portion contains 12 elements:

Header block of a Lua 5 binary chunk
Default values are for a 32-bit little-endian platform with IEEE 754 doubles
as the number format. The header size on this platform is 22 bytes.

4 bytes Header signature: ESC, “Lua”

1 byte Version number, 0x50 (80 decimal) for Lua 5.0.2
• High hex digit is major version number
• Low hex digit is minor version number

1 byte Endianness
• 0=big endian, 1=little endian

1 byte Size of int (in bytes) (default 4)
1 byte Size of size_t (in bytes) (default 4)
1 byte Size of Instruction (in bytes) (default 4)
1 byte Size of OP field (in bits) (default 6)
1 byte Size of A field (in bits) (default 8)
1 byte Size of B field (in bits) (default 9)
1 byte Size of C field (in bits) (default 9)
1 byte Size of size of a Lua number (in bytes) (default 8)

8 bytes* Test number (encoding of 3.14159265358979323846E7)
• The only field in the header that is endian-dependent.

* Changes depending on the field size given in the global header.

Thus the first 14 bytes of a Lua 5 binary chunk have fixed locations. Since the characteristics
of a Lua virtual machine is hard-coded, the Lua undump code has to check the header bytes
and determine whether the binary chunk is fit for consumption or not. If you have a binary
chunk that does not match the characteristics of the Lua platform you want to run it on, then
Lua will usually refuse to load the chunk.

In theory, a Lua binary chunk is portable; in real life, there is no need for the undump code to
support such a feature. If you need undump  to load all  kinds of binary chunks,  you are
probably doing something  wrong. If however you somehow need this feature, you can try
ChunkSpy’s rewrite option, which allows you to convert a binary chunk from one profile to
another.

Anyway, most of the time there is little need to seriously scrutinize the header, because since
Lua source code is usually available, a chunk can be readily compiled into the native binary
chunk format.
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The header block is followed immediately by the top-level function or chunk:

Function block of a Lua 5 binary chunk
Holds all the relevant data for a function. There is one top-level function.

String source name
Integer line defined
1 byte number of upvalues
1 byte number of parameters
1 byte vararg function flag, true if non-zero
1 byte maximum stack size (number of registers used)

List source line positions for each instruction
List list of locals
List list of upvalues
List list of constants
List list of function prototypes
List list of instructions (code)

A function block in a binary chunk defines the prototype of a function. To actually execute
the function, Lua creates an instance (or closure) of the function first. A function in a binary
chunk consist of a few header elements and a bunch of lists.

A String is defined in this way:

All strings are defined in the following format:

Size_t String data size
Bytes String data, includes a NUL (ASCII 0) at the end

The string data size takes into consideration a NUL character at the end,
so an empty string (“”) has 1 as the size_t value. A size_t of 0 means zero
string data bytes; the string does not exist. This is often used by the source
name field of a function.

The  source name is  usually the name of the source file  from which the binary chunk is
compiled. It may also refer to a string. This source name is specified only in the top-level
function; in other functions, this field consists only of a Size_t with the value 0.

The line defined is the line number where the function prototype was defined. Next comes
the number  of upvalues,  the number  of parameters,  a boolean flag  to  show whether  the
function is a vararg function (a true is encoded as a 1,) and a maximum stack size, all single-
byte values.

After the function header elements comes a number of lists that store the information that
makes up the body of the function.  Each list  starts with an  Integer  as a list  size  count,
followed by a number of list elements. Each list has its own element format. A list size of 0
has no list elements at all.
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In the following boxes, a data type in square brackets, e.g.  [Integer] means that there are
multiple numbers of the element, in this case an integer. The count is given by the list  size.
Names in parentheses are the ones given in the Lua sources; they are data structure fields.

Source line position list
Holds the source line number for each corresponding instruction in a
function. This information is used by error handlers or debuggers. In a
stripped binary, the size of this list is zero. The execution of a function does
not depend on this list.

Integer size of source line position list (sizelineinfo)
[Integer] list index corresponds to instruction position; the integer

value is the line number of the Lua source where the
instruction was generated

Next up is the locals list. Each local variable entry has 3 fields, a string and two integers:

Locals list
Holds list of local variable names and the program counter range in which
the local variable is active.

Integer size of locals list (sizelocvars)
[
    String name of local variable (varname)
    Integer start of local variable scope (startpc)
    Integer end of local variable scope (endpc)
]

The upvalues list and the constants list follows locals:

Upvalues list
Holds list of upvalue names.

Integer size of upvalues list (sizeupvalues)
[String] name of upvalue

Constants list
Holds list of constants (it’s a constant pool.)

Integer size of constants list (sizek)
[
    1 byte type of constant (value in parentheses):

LUA_TNIL (0), LUA_TNUMBER (3) or LUA_TSTRING (4)
    Const the constant itself: this field does not exist if the constant 

type is 0; it is a Number for type 3, and a String for type 4.
]
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Number is the Lua number data type, normally an IEEE 754 64-bit double.  Integer,  Size_t
and Number are all endian-sensitive, and they are converted into the native endian during the
binary chunk loading, or undump, process. Their sizes and formats are of course specified in
the binary chunk header.

The function prototypes list comes after the constants list:

Function prototypes list
Holds function prototypes defined within the function.

Integer size of function prototypes (sizep)
[Functions] function prototype data, or function blocks

Function prototypes or function blocks have the exact same format as the top-level function
or chunk.  However,  function prototypes that  isn’t  the top-level function do  not  have the
source name field defined. In this way, function prototypes at different lexical scoping levels
are defined and nested. In a complex binary chunk, the nesting may be several levels deep. A
closure will refer to a function by its number in the list.

The final  list  is  the instruction list,  or the actual code to the function.  This  is  the list  of
instructions that will actually be executed:

Instructions list
Holds list of instructions that will be executed.

Integer size of code (sizecode)
[Instruction] virtual machine instructions

The format of the virtual machine instructions were given in the last chapter. All of these lists
are not shared or re-used between functions: Locals, upvalues and constants referenced in the
code are specified  in  the respective lists  in  the same function.  A RETURN instruction is
always generated by the code generator, so the size of the instructions list should be at least 1.

In addition, locals, upvalues, constants and the function prototypes are indexed using numbers
starting from 0. In disassembly listings, both the source line position list and the instructions
list  are  indexed  starting  from 1.  Although all  jump-related  instructions  use  only  signed
displacements,  the  scope  of  local  variables  is  encoded  using  absolute  program  counter
positions, and these positions are based on a starting index of 1. This is also consistent with
the output from luac .

How does it  all fit  in?  You can easily generate a detailed binary chunk disassembly using
ChunkSpy. Enter the following short bit of code and name the file simple.lua :

local a = 8
function b(c) d = a + c end

Next, run ChunkSpy from the command line to generate the listing:

$ lua ChunkSpy.lua --source simple.lua > simple.lst
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The following is a description of the generated listing, split into segments.

Pos   Hex Data           Description or Code
--------------------------------------------------- ---------------------
0000                     ** source chunk: simple.lu a
                         ** global header start **
0000  1B4C7561           header signature: "\27Lua"
0004  50                 version (major:minor hex d igits)
0005  01                 endianness (1=little endia n)
0006  04                 size of int (bytes)
0007  04                 size of size_t (bytes)
0008  04                 size of Instruction (bytes )
0009  06                 size of OP (bits)
000A  08                 size of A (bits)
000B  09                 size of B (bits)
000C  09                 size of C (bits)
000D  08                 size of number (bytes)
000E  B6099368E7F57D41   sample number (double)
                         * x86 standard (32-bit, li ttle endian, doubles)
                         ** global header end **

This  is  an example  of a binary chunk  header.  ChunkSpy calls  this  the  global  header  to
differentiate it from a function header. For binary chunks specific to a certain platform, it is
easy to match the entire header at one go instead of testing each field.

The global header is followed by the function header of the top-level function:

0016                     ** function [0] definition  (level 1)
                         ** start of function **
0016  0B000000           string size (11)
001A  73696D706C652E6C+  "simple.l"
0022  756100             "ua\0"
                         source name: simple.lua
0025  00000000           line defined (0)
0029  00                 nups (0)
002A  00                 numparams (0)
002B  00                 is_vararg (0)
002C  02                 maxstacksize (2)

The source name is only present in the top-level function. A top-level chunk does not have a
line  number on which it  is  defined,  so the field  is 0. There are no upvalues or parameters
either, and it  does not accept a variable  number of parameters. The stack size is set at the
minimum of 2 for this very simple chunk.

Next we come to the various lists, starting with the source line position list:

                         * lines:
002D  05000000           sizelineinfo (5)
                         [pc] (line)
0031  01000000           [1] (1)
0035  02000000           [2] (2)
0039  02000000           [3] (2)
003D  02000000           [4] (2)
0041  02000000           [5] (2)

There are 5 instructions in the top-level function. The source for the first instruction was
defined on line 1, while the other 4 instructions were defined on line 2.
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                         * locals:
0045  01000000           sizelocvars (1)
0049  02000000           string size (2)
004D  6100               "a"
                         local [0]: a
004F  01000000             startpc (1)
0053  04000000             endpc   (4)
                         * upvalues:
0057  00000000           sizeupvalues (0)

The top-level function has one local variable, named “a”, active from location 1 to location 4,
and it refers to register 0. There are no upvalues.

                         * constants:
005B  02000000           sizek (2)
005F  03                 const type 3
0060  0000000000002040   const [0]: (8)
0068  04                 const type 4
0069  02000000           string size (2)
006D  6200               "b"
                         const [1]: "b"

The top-level function requires two constants, the number 8 (which is used in the assignment
on line 1) and the string “b” (which is used to refer to the global variable b on line 2.)

On line 2 of the source, a function prototype was declared. The function prototype list holds
all the relevant information, a function block within a function block. ChunkSpy reports it as
function prototype number 0, at level 2.  Level 1 is the top-level function; there is only one
level 1 function, but there may be more than one function prototype at other levels.

                         * functions:
006F  01000000           sizep (1)
                         
0073                     ** function [0] definition  (level 2)
                         ** start of function **
0073  00000000           string size (0)
                         source name: (none)
0077  02000000           line defined (2)
007B  01                 nups (1)
007C  01                 numparams (1)
007D  00                 is_vararg (0)
007E  02                 maxstacksize (2)
                         * lines:
007F  04000000           sizelineinfo (4)
                         [pc] (line)
0083  02000000           [1] (2)
0087  02000000           [2] (2)
008B  02000000           [3] (2)
008F  02000000           [4] (2)
                         * locals:
0093  01000000           sizelocvars (1)
0097  02000000           string size (2)
009B  6300               "c"
                         local [0]: c
009D  00000000             startpc (0)
00A1  03000000             endpc   (3)

Parameters are located from the bottom of the stack, so the single parameter c is at register 0.
It is also listed as a local, with a startpc value of 0.
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                         * upvalues:
00A5  01000000           sizeupvalues (1)
00A9  02000000           string size (2)
00AD  6100               "a"
                         upvalue [0]: a

There is also an upvalue, a, which refers to the local a in the parent (top) function.

                         * constants:
00AF  01000000           sizek (1)
00B3  04                 const type 4
00B4  02000000           string size (2)
00B8  6400               "d"
                         const [0]: "d"
                         * functions:
00BA  00000000           sizep (0)
                         * code:
00BE  04000000           sizecode (4)
00C2  04000001           [1] getupval   1   0        ; a
00C6  0C800001           [2] add        1   1   0  
00CA  07000001           [3] setglobal  1   0        ; d
00CE  1B800000           [4] return     0   1      
                         ** end of function **

Function b has 4 instructions. Most Lua virtual machine instructions are easy to decipher, but
some of them have details that are not immediately evident. This example however should be
quite easy to understand. In line [1], 0 is the upvalue a and 1 is the target register, which is a
temporary register. Line [2] is the addition operation, with register 1 holding the temporary
result  while  register 0 is  the function parameter  c. In line  [3],  the global  d (so named by
constant 0) is set, and in the next line, control is returned to the caller.

After the specification of function blocks in the function prototypes list, the parent function
block resumes with its own code listing:

                         * code:
00D2  05000000           sizecode (5)
00D6  01000000           [1] loadk      0   0        ; 8
00DA  22000001           [2] closure    1   0        ; 1 upvalues
00DE  00000000           [3] move       0   0      
00E2  47000001           [4] setglobal  1   1        ; b
00E6  1B800000           [5] return     0   1      
                         ** end of function **

00EA                     ** end of chunk **

The first line of the source code compiles to a single instruction, line [1]. Local a is register 0
and the number 8 is constant 0. In line [2], an instance of function prototype 0 is created, and
the closure is temporarily placed in register 1. The MOVE instruction in line [3] is actually
used by the CLOSURE instruction to manage the upvalue  a; it  is not really executed. This
will be explained in detail in Chapter 14. The closure is then placed into the global b in line
[4]; “b” is constant 1 while the closure is in register 1. Line [5] returns control to the calling
function. In this case, it exits the chunk.

Now that we’ve seen a binary chunk in detail, we will proceed to look at each Lua 5 virtual
machine instruction.
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5  Instruction Notation
Before looking at some Lua virtual machine instructions, here is a little something about the
notation used for describing instructions. Instruction descriptions are given as comments in
the  Lua  source  file  lopcodes.h .  The  instruction  descriptions  are  reproduced  in  the
following chapters, with additional explanatory notes. Here are some basic symbols:

R(A) Register A (specified in instruction field A)
R(B) Register B (specified in instruction field B)
R(C) Register C (specified in instruction field C)
PC Program Counter
Kst(n) Element n in the constants list
Upvalue[n] Name of upvalue with index n
Gbl[sym] Global variable indexed by symbol sym
RK(B) Register B or a constant index
RK(C) Register C or a constant index
sBx Signed displacement (in field sBx) for all kinds of jumps

The notation used to describe instructions is a little like pseudo-C. The operators used in the
notation  are  largely  C  operators,  while  conditional  statements  use  C-style  evaluation.
Booleans are evaluated C-style. Thus, the notation is a loose translation of the actual C code
that implements an instruction.

The  operation  of  some  instructions  cannot  be  clearly  described  by  one or  two lines  of
notation. Hence, this guide will  supplement symbolic notation with detailed descriptions of
the operation of each instruction. Having described an instruction, examples will be given to
show the instruction working in a short snippet of Lua code. Using ChunkSpy’s interactive
mode, you can choose to try out the examples yourself and get instant feedback in the form of
disassembled  code.  If  you  want  a  disassembled  listing  plus  the byte  values  of data and
instructions, you can use ChunkSpy to generate a normal, verbose, disassembly listing.

The program counter of the virtual machine (PC) always points to the next instruction. This
behaviour is standard for most microprocessors. The rule is that once an instruction is read in
to be executed, the program counter is immediately updated. So, to skip a single instruction
following the current instruction, add 1 (the displacement) to the PC. A displacement of -1
will theoretically cause a JMP instruction to jump back onto itself,  causing an infinite loop.
Luckily, the code generator is not supposed to be able to make up stuff like that.

As previously explained,  registers  and local  variables  are roughly  equivalent.  Temporary
results are always held in registers. Instruction fields B and C can point to a constant instead
of a register for some instructions, this is when the field  value is  MAXSTACK or bigger.
Finally,  there is no set convention for source and target registers; A is not always a single
target register in the classical RISC processor sense. Disassembly listings preserve the A, B,
C operand field order for consistency.
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6  Loading Constants
Loads and  moves  are the starting  point  of pretty much  all  processor  or  virtual  machine
instruction sets, so we’ll start with primitive loads and moves:

MOVE A  B R(A) := R(B)

Copies the value of register R(B) into register R(A). If R(B) holds a table,
function or userdata, then the reference to that object is copied. MOVE is
often used for moving values into place for the next operation.

The opcode for MOVE has a second purpose – it is also used in creating
closures, always appearing after the CLOSURE instruction; see CLOSURE
for more information.

The most straightforward use of MOVE is for assigning a local to another local:

>local a,b = 10; b = a
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.local  "b"  ; 1
.const  10  ; 0
[1] loadk      0   0        ; 10
[2] loadnil    1   1      
[3] move       1   0      
[4] return     0   1      
; end of function

Line [3] assigns (copies) the value in local a (register 0) to local b (register 1).

You won’t  see  MOVE  instructions  used  in  arithmetic  expressions  because  they are  not
needed by arithmetic  operators. All  arithmetic  operators are in 2- or 3-operand style:  the
entire local stack frame is already visible to operands R(A), R(B) and R(C) so there is no need
for any extra MOVE instructions.

Other places where you will see MOVE are:• When moving parameters into place for a function call.• When moving values into place for certain instructions where stack order is important, e.g.
GETTABLE, SETTABLE and CONCAT.• When copying return values into locals after a function call.• After CLOSURE instructions (discussed in Chapter 14.)

There  are  3  fundamental  instructions  for  loading  constants  into  local  variables.  Other
instructions,  for  reading  and  writing  globals,  upvalues  and  tables  are  discussed  in  the
following chapters. The first constant loading instruction is LOADNIL:

LOADNIL A B R(A) := ... := R(B) := nil

Sets a range of registers from R(A) to R(B) to nil. If a single register is to
be assigned to, then R(A) = R(B). When two or more consecutive locals
need to be assigned nil values, only a single LOADNIL is needed.
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LOADNIL uses the operands A and B to mean a range of register locations. The example for
MOVE in the last page shows LOADNIL used to set a single register to nil.

>local a,b,c,d,e = nil,nil,0
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 0 5
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
.local  "d"  ; 3
.local  "e"  ; 4
.const  0  ; 0
[1] loadnil    0   1      
[2] loadk      2   0        ; 0
[3] loadnil    3   4      
[4] return     0   1      
; end of function

In this example, line [1] nils locals a and b. Line [3] nils locals d and e. If all the locals are to
be initialized to nil, then only a single LOADNIL will be needed.

LOADK A Bx R(A) := Kst(Bx)

Loads constant number Bx into register R(A). Constants are usually
numbers or strings. Each function has its own constant list, or pool.

LOADK loads a constant from the constants list into a register or local. Constants are indexed
starting from 0. Some instructions, such as arithmetic instructions, can use the constants list
without needing a LOADK. Constants are pooled in the list,  duplicates are eliminated. The
list can hold nils, numbers or strings.

>local a,b,c,d = 3,"foo",3,"foo"
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 0 4
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
.local  "d"  ; 3
.const  3  ; 0
.const  "foo"  ; 1
[1] loadk      0   0        ; 3
[2] loadk      1   1        ; "foo"
[3] loadk      2   0        ; 3
[4] loadk      3   1        ; "foo"
[5] return     0   1      
; end of function

The constant 3 and the constant “foo” are both written twice in the source snippet, but in the
constants list,  each constant has a single location. The constants list  contains the names of
global variables as well, since GETGLOBAL and SETGLOBAL makes an implied LOADK
operation in order to get the name string of a global variable first before looking it up in the
global table.

The final constant-loading instruction is LOADBOOL, for setting a boolean value, and it has
a little additional functionality.
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LOADBOOL A B C R(A) := (Bool)B; if (C) PC++

Loads a boolean value (true or false) into register R(A). true is usually
encoded as an integer 1, false is always 0. If C is non-zero, then the next
instruction is skipped (this is used when you have an assignment
statement where the expression uses relational operators, e.g. M = K>5.)

You can use any non-zero value for the boolean true in field B, but since
you cannot use booleans as numbers in Lua, it’s best to stick to 1 for true.

LOADBOOL is  the only instruction for  loading  a boolean value.  It’s also  used where a
boolean result is supposed to be generated, because relational test instructions, for example,
do not generate boolean results – they perform conditional jumps instead. The operand C is
used to optionally skip the next instruction (by incrementing PC by 1) in order to support such
code. For simple assignments of boolean values, C is always 0.

>local a,b = true,false
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.local  "b"  ; 1
[1] loadbool   0   1   0    ; true
[2] loadbool   1   0   0    ; false
[3] return     0   1      
; end of function

This example is straightforward: Line [1] assigns  true  to local  a (register 0) while line [2]
assigns false to local b (register 1).

>local a = 5 > 2
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.const  5  ; 0
.const  2  ; 1
[1] lt         1   251 250  ; 2 5, to [3] if false
[2] jmp        1            ; to [4]
[3] loadbool   0   0   1    ; false, to [5]
[4] loadbool   0   1   0    ; true
[5] return     0   1      
; end of function

This is an example  of an expression that gives a boolean result. Notice that Lua does not
optimize the expression into a true value; it is not intended to do such optimizations.

Since the relational operator LT (which will be covered in greater detail later) does not give a
boolean result but performs a conditional jump, LOADBOOL uses its C operand to perform
an unconditional jump in line [3] – this saves one instruction and makes things a little tidier.

In  the  disassembly,  when  LT  tests  2  <  5,  it  evaluates  to  true  and  doesn’t  perform a
conditional jump. Line [2] jumps over the “false” path, and in line [4], the local a (register 0)
is assigned the boolean true by the instruction LOADBOOL. If 2 and 5 were reversed, line
[3] will be followed instead, setting a false, and the “true” path (line [4]) will be skipped.
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7  Upvalues and Globals
When the Lua virtual machine needs an upvalue or a global, there are dedicated instructions
to load the value into a register. Similarly, when an upvalue or a global needs to be written to,
dedicated instructions are used.

GETGLOBAL A Bx R(A) := Gbl[Kst(Bx)]

Copies the value of the global variable whose name is given in constant
number Bx into register R(A).

SETGLOBAL A Bx Gbl[Kst(Bx)] := R(A)

Copies the value from register R(A) into the global variable whose name is
given in constant number Bx.

The GETGLOBAL and SETGLOBAL instructions are very straightforward and easy to use.
The instructions require that the global variable name be a constant, indexed by instruction
field Bx. R(A) is either the source or target register. The names of the global variables used
by a function will be part of the constants list of the function.

>a = 40; local b = a
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "b"  ; 0
.const  "a"  ; 0
.const  40  ; 1
[1] loadk      0   1        ; 40
[2] setglobal  0   0        ; a
[3] getglobal  0   0        ; a
[4] return     0   1      
; end of function

From the example, you can see that “b” is the name of the local variable while “a” is the name
of  the  global  variable.  Line  [1]  loads  the  number  40  into  register  0  (functioning  as  a
temporary register, since local b hasn’t been defined.) Line [2] assigns the value in register 0
to the global  variable  with name  “a” (constant  0).  By line  [3],  local  b is  defined and is
assigned the value of global a.

GETUPVAL A B R(A) := UpValue[B]

Copies the value in upvalue number B into register R(A). Each function
may have its own upvalue list.

The opcode for GETUPVAL has a second purpose – it is also used in
creating closures, always appearing after the CLOSURE instruction; see
CLOSURE for more information.

SETUPVAL A B UpValue[B] := R(A)

Copies the value from register R(A) into the upvalue number B in the
upvalue list for that function.
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GETUPVAL and SETUPVAL uses the upvalues list. Only the names of upvalues are stored
in the list. During execution, upvalues are set up by a CLOSURE, and maintained by the Lua
virtual machine. In the following example, function b is declared inside the main chunk, and
is  shown  in  the  disassembly  as  a  function  prototype  within a  function  prototype.  The
indentation helps to separate the two functions.

>local a; function b() a = 1 return a end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.const  "b"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .upvalue  "a"  ; 0
  .const  1  ; 0
  [1] loadk      0   0        ; 1
  [2] setupval   0   0        ; a
  [3] getupval   0   0        ; a
  [4] return     0   2      
  [5] return     0   1      
  ; end of function

[1] loadnil    0   0      
[2] closure    1   0        ; 1 upvalues
[3] move       0   0      
[4] setglobal  1   0        ; b
[5] return     0   1      
; end of function

In the main chunk (function 0, level 1), local  a is first initialized to nil. The CLOSURE in
line [2] then instantiates function prototype 0 (function 0, level 2) with a single upvalue,  a.
Line [3] is part of the closure, it links local a in the current scope to upvalue a in the closure.
Finally the closure is assigned to global b.

In function b, there is a single upvalue, a. In Pascal, a variable in an outer scope is found by
traversing stack frames. However, instantiations of Lua functions are first-class values, and
they  may be  assigned  to  a  variable  and  referenced  elsewhere.  Managing  upvalues  thus
becomes a little more tricky than traversing stack frames in Pascal. The Lua virtual machine
solution  is  to  provide  a  clean  interface  via  GETUPVAL  and SETUPVAL,  while  the
management of upvalues part is handled by the virtual machine itself.

Line [2] in function  b sets upvalue  a (upvalue number 0 in the upvalue table)  to a number
value of 1 (held in temporary register 0.) In line [3], the value in upvalue a is retrieved and
placed into register 0, where the following RETURN instruction will use it as a return value.
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8  Table Instructions
Accessing table elements is a little more complex than accessing upvalues and globals:

GETTABLE A B C R(A) := R(B)[RK(C)]

Copies the value from a table element into register R(A). The table is
referenced by register R(B), while the index to the table is given by RK(C),
which may be the value of register R(C) or a constant number.

SETTABLE A B C R(A)[RK(B)] := RK(C)

Copies the value from register R(C) or a constant into a table element. The
table is referenced by register R(A), while the index to the table is given by
RK(B), which may be the value of register R(B) or a constant number.

All  3 operand fields  are used, and some of the operands can be constants. A constant  is
specified by biasing the constant number by MAXSTACK (250). If RK(C) need to refer to
constant  1, then it  will  have the value of (250+1) or 251. Allowing  constants to be used
directly reduces considerably the need for temporary registers.

>local p = {}; p[1] = "foo"; return p["bar"]
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "p"  ; 0
.const  1  ; 0
.const  "foo"  ; 1
.const  "bar"  ; 2
[1] newtable   0   0   0    ; array=0, hash=0
[2] settable   0   250 251  ; 1 "foo"
[3] gettable   1   0   252  ; "bar"
[4] return     1   2      
[5] return     0   1      
; end of function

In line  [1],  a new empty table is  created and the reference placed in local  p (register 0).
Creating and populating new tables is a little involved so it will only be discussed later.

Table index 1 is set to “foo” in line [2] by the SETTABLE instruction. Both the index and the
value for the table element are encoded constant numbers; 250 is constant 0 (the number 1)
while 251 is constant 1 (the string “foo”.) The R(A) value of 0 points to the new table that
was defined in line [1].

In line [3], the value of the table element indexed by the string “bar” is copied into temporary
register 1, which is then used by RETURN as a return value. 252 is constant 2 (the string
“bar”) while 0 in field B is the reference to the table.
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9  Arithmetic and String Instructions
The  Lua virtual  machine’s  set  of  arithmetic  instructions  looks like  3-operand arithmetic
instructions on an RISC processor. 3-operand instructions allow arithmetic expressions to be
translated into machine instructions pretty efficiently.

ADD A B C R(A) := RK(B) + RK(C)
SUB A B C R(A) := RK(B) – RK(C)
MUL A B C R(A) := RK(B) * RK(C)
DIV A B C R(A) := RK(B) / RK(C)
POW A B C R(A) := RK(B)  ̂RK(C)

Binary operators (arithmetic operators with two inputs.) The result of the
operation between RK(B) and RK(C) is placed into R(A). These
instructions are in the classic 3-register style. RK(B) and RK(C) may either
be registers or constants in the constant pool.

ADD is addition. SUB is subtraction. MUL is multiplication. DIV is division.
POW is exponentiation.

The source operands, RK(B) and RK(C), may be constants. If a constant is out of range of
field B or field C, then the constant will be loaded into a temporary register in advance.

>local a,b = 2,4; a = a + 4 * b - a / 2 ^ b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 0 4
.local  "a"  ; 0
.local  "b"  ; 1
.const  2  ; 0
.const  4  ; 1
[1] loadk      0   0        ; 2
[2] loadk      1   1        ; 4
[3] mul        2   251 1    ; 4
[4] add        2   0   2  
[5] pow        3   250 1    ; 2
[6] div        3   0   3  
[7] sub        0   2   3  
[8] return     0   1      
; end of function

Each arithmetic operator translates into a single instruction. This also means that while the
statement “count = count + 1 ” is verbose, it translates into a single instruction if count
is a local. If count is a global, then two extra instructions are required to read and write to the
global (GETGLOBAL and SETGLOBAL), since arithmetic operations can only be done on
registers (locals) only.

Next up are instructions for performing unary minus and logical NOT:

UNM A B R(A) := -R(B)

Unary minus (arithmetic operator with one input.) R(B) is negated and the
value placed in R(A). R(A) and R(B) are always registers.
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NOT A B R(A) := not R(B)

Applies a boolean NOT to the value in R(B) and places the result in R(A).
R(A) and R(B) are always registers.

Here is an example:

>local p,q = 10,false; q,p = -p,not q
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "p"  ; 0
.local  "q"  ; 1
.const  10  ; 0
[1] loadk      0   0        ; 10
[2] loadbool   1   0   0    ; false
[3] unm        2   0      
[4] not        0   1      
[5] move       1   2      
[6] return     0   1      
; end of function

Both UNM and NOT do not accept a constant as a source operand. When an unary minus is
applied to a constant number, the unary minus is optimized away. Similarly, when a not  is
applied to true or false, the logical operation is optimized away.

CONCAT A B C R(A) := R(B).. ... ..R(C)

Performs concatenation of two or more strings. In a Lua source, this is
equivalent to one or more concatenation operators (‘..’) between two or
more expressions. The source registers must be consecutive, and C must
always be greater than B. The result is placed in R(A).

Like  LOADNIL,  CONCAT  accepts  a  range  of  registers.  Doing  more  than  one  string
concatenation at a time is faster and more efficient than doing them separately.

>local x,y = "foo","bar"; return x..y..x..y
; function [0] definition (level 1)
; 0 upvalues, 0 params, 6 stacks
.function  0 0 0 6
.local  "x"  ; 0
.local  "y"  ; 1
.const  "foo"  ; 0
.const  "bar"  ; 1
[1] loadk      0   0        ; "foo"
[2] loadk      1   1        ; "bar"
[3] move       2   0      
[4] move       3   1      
[5] move       4   0      
[6] move       5   1      
[7] concat     2   2   5  
[8] return     2   2      
[9] return     0   1      
; end of function

In this example, strings are moved into place first (lines [3] to [6]) in the concatenation order
before a single CONCAT instruction is executed in line [7].
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10  Jumps and Calls
Lua does not have any unconditional jump feature in the language itself,  but in the virtual
machine, the unconditional jump is used in control structures and logical expressions.

JMP sBx PC += sBx

Performs an unconditional jump, with sBx as a signed displacement. sBx is
added to the program counter (PC), which points to the next instruction to
be executed. E.g., if sBx is 0, the VM will proceed to the next instruction.

JMP is used in loops, conditional statements, and in expressions when a
boolean true/false need to be generated.

For example, since a relational test instruction makes conditional jumps rather than generate a
boolean result, a JMP is used in the code sequence for loading either a true or a false:

>local m, n; return m >= n
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "m"  ; 0
.local  "n"  ; 1
[1] loadnil    0   1      
[2] le         1   1   0    ; to [4] if false
[3] jmp        1            ; to [5]
[4] loadbool   2   0   1    ; false, to [6]
[5] loadbool   2   1   0    ; true
[6] return     2   2      
[7] return     0   1      
; end of function

In line  [3],  the JMP skips over the false  path (line  [4]) to the true path (line  [5]).  More
examples where JMP is used will be covered in later chapters.

Next we will look at the CALL instruction, for calling instantiated functions:

CALL A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))

Performs a function call, with register R(A) holding the reference to the
function object to be called. Parameters to the function are placed in the
registers following R(A). If B is 1, the function has no parameters. If B is 2
or more, there are (B-1) return values.

If B is 0, the function parameters range from R(A+1) to the top of the stack.
This form is used when the last expression in the parameter list is a
function call, so the number of actual parameters is indeterminate.

Results returned by the function call is placed in a range of registers
starting from R(A). If C is 1, no return results are saved. If C is 2 or more,
(C-1) return values are saved. If C is 0, then multiple return results are
saved, depending on the called function.

CALL always updates the top of stack value. The use of the top of stack is
implied in CALL, RETURN and SETLISTO.
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Generally speaking, for fields B and C, a zero means that multiple results or parameters (up to
the top of stack) are expected. If the number of results or parameters are fixed, then the actual
number is one less than the encoded field value. Here is the simplest possible call:

>z()
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.const  "z"  ; 0
[1] getglobal  0   0        ; z
[2] call       0   1   1  
[3] return     0   1      
; end of function

In line [2], the call has zero parameters (field B is 1), zero results are retained (field C is 1),
while register 0 temporarily holds the reference to the function object from global z. Next we
see a function call with multiple parameters or arguments:

>z(1,2,3)
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 0 4
.const  "z"  ; 0
.const  1  ; 1
.const  2  ; 2
.const  3  ; 3
[1] getglobal  0   0        ; z
[2] loadk      1   1        ; 1
[3] loadk      2   2        ; 2
[4] loadk      3   3        ; 3
[5] call       0   4   1  
[6] return     0   1      
; end of function

Lines [1] to [4] loads the function reference and the arguments in order, then line [5] makes
the call with field B value of 4, which means there are 3 parameters. Since the call statement
is not assigned to anything, no return results need to be retained, hence field C is 1. Here is an
example that uses multiple parameters and multiple return values:

>local p,q,r,s = z(y())
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 0 4
.local  "p"  ; 0
.local  "q"  ; 1
.local  "r"  ; 2
.local  "s"  ; 3
.const  "z"  ; 0
.const  "y"  ; 1
[1] getglobal  0   0        ; z
[2] getglobal  1   1        ; y
[3] call       1   1   0  
[4] call       0   0   5  
[5] return     0   1      
; end of function

First, the function references are retrieved (lines [1] and [2]), then function  y is called first
(temporary register 1). The CALL has a field  C of 0, meaning  multiple  return values are
accepted. These return values become the parameters to function z, and so in line [4], field B
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of the CALL instruction is 0, signifying multiple parameters. After the call to function z, 4
results are retained,  so field  C in  line  [4] is  5. Finally,  here is  an example  with calls  to
standard library functions:

>print(string.char(64))
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.const  "print"  ; 0
.const  "string"  ; 1
.const  "char"  ; 2
.const  64  ; 3
[1] getglobal  0   0        ; print
[2] getglobal  1   1        ; string
[3] gettable   1   1   252  ; "char"
[4] loadk      2   3        ; 64
[5] call       1   2   0  
[6] call       0   0   1  
[7] return     0   1      
; end of function

When a function  call  is  the last  parameter  to another function  call,  the  former  can pass
multiple return values, while the latter can accept multiple parameters.

Complementing CALL is RETURN:

RETURN A B return R(A), ... ,R(A+B-2)

Returns to the calling function, with optional return values. If B is 1, there
are no return values. If B is 2 or more, there are (B-1) return values,
located in consecutive registers from R(A) onwards.

If B is 0, the set of values from R(A) to the top of the stack is returned. This
form is used when the last expression in the return list is a function call, so
the number of actual values returned is indeterminate.

RETURN also closes any open upvalues, equivalent to a CLOSE
instruction. See the CLOSE instruction for more information.

Like CALL, a field B value of 0 signifies multiple return values (up to top of stack.)

>local e,f,g; return f,g
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 0 5
.local  "e"  ; 0
.local  "f"  ; 1
.local  "g"  ; 2
[1] loadnil    0   2      
[2] move       3   1      
[3] move       4   2      
[4] return     3   3      
[5] return     0   1      
; end of function

In line [4], 2 return values are specified (field B value of 3) and those values are placed in
consecutive  registers starting from register 3. The RETURN in line  [5] is redundant; it  is
always generated by the Lua code generator.
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TAILCALL A B C return R(A)(R(A+1), ... ,R(A+B-1))

Performs a tail call, which happens when a return statement has a single
function call as the expression, e.g. return foo(bar) . A tail call is
effectively a goto, and avoids nesting calls another level deeper.

Like CALL, register R(A) holds the reference to the function object to be
called. B encodes the number of parameters in the same manner as a
CALL instruction.

C isn’t used by TAILCALL, since all return results are significant. In any
case, Lua always generates a 0 for C, to denote multiple return results.

A TAILCALL is  used only for one specific  return  style, described above. Multiple return
results are always produced by a tail call. Here is an example:

>return x("foo", "bar")
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.const  "x"  ; 0
.const  "foo"  ; 1
.const  "bar"  ; 2
[1] getglobal  0   0        ; x
[2] loadk      1   1        ; "foo"
[3] loadk      2   2        ; "bar"
[4] tailcall   0   3   0  
[5] return     0   0      
[6] return     0   1      
; end of function

Arguments for a tail call are handled in exactly the same way as arguments for a normal call,
so in line [3], the tail call has a field B value of 3, signifying 2 parameters. Field C is 0, for
multiple  returns.  In practice,  field  C is  not  used by the virtual  machine  since the syntax
guarantees multiple return results.

Line [5] is a RETURN instruction specifying multiple return results, but as far as I can tell
from lvm.c , the virtual machine does not require the instruction. Once the tail call transfers
execution to function x, a RETURN in function x will not cause the virtual machine to arrive
back at line [5]. Line [6] is also redundant. No harm done, only two redundant instructions.

Finally, we have a special form of a call instruction, SELF, which is used for object-oriented
programming:

SELF A B C R(A+1) := R(B); R(A) := R(B)[RK(C)]

For object-oriented programming using tables. Retrieves a function
reference from a table element and places it in register R(A), then a
reference to the table itself is placed in the next register, R(A+1). This
instruction saves some messy manipulation when setting up a method call.

R(B) is the register holding the reference to the table with the method. The
method function itself is found using the table index RK(C), which may be
the value of register R(C) or a constant number.
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A SELF instruction saves an extra instruction and speeds up the calling of methods in object-
oriented programming. In the following example:

>foo:bar("baz")
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.const  "foo"  ; 0
.const  "bar"  ; 1
.const  "baz"  ; 2
[1] getglobal  0   0        ; foo
[2] self       0   0   251  ; "bar"
[3] loadk      2   2        ; "baz"
[4] call       0   3   1  
[5] return     0   1      
; end of function

The SELF in line [2] is equivalent to a GETTABLE lookup (the table is in register 0 and the
index  is constant  1) and  at the same time, a MOVE (copying the table  from register 0 to
register  1.)   Without  SELF,  a  GETTABLE cannot  write  to register  0  because  the table
reference  will  be  overwritten  before  a  MOVE  can  be  done.  Hence,  SELF  saves  one
instruction and one temporary register slot.

After setting up the method call using SELF, the call is made with the usual CALL instruction
in line [4], which is equivalent to the following: foo.bar(foo, "baz")

Next we will look at more complicated instructions.
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11  Relational and Logic Instructions
Relational and logic instructions are used in conjunction with other instructions to implement
control structures or expressions.  Instead of generating  boolean results,  these instructions
performs a conditional jump over the next instruction. Hence, there is always a “true path”
and a “false path”.

EQ A B C if ((RK(B) == RK(C)) ~= A) then pc++
LT A B C if ((RK(B) <  RK(C)) ~= A) then pc++
LE A B C if ((RK(B) <= RK(C)) ~= A) then pc++

Compares RK(B) and RK(C), which may be registers or constants. If the
boolean result is not A, then skip the next instruction. Conversely, if the
boolean result equals A, continue with the next instruction.

EQ is for equality. LT is for “less than” comparison. LE is for “less than or
equal to” comparison. The boolean A field allows the full set of relational
comparison operations to be synthesized from these three instructions.

By comparing the result of the relational operation with A, the sense of the comparison can be
reversed. Obviously the alternative is to reverse the paths taken by the instruction, but that
will probably complicate code generation some more.

>local x,y; return x ~= y
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "x"  ; 0
.local  "y"  ; 1
[1] loadnil    0   1      
[2] eq         0   0   1    ; to [4] if true
[3] jmp        1            ; to [5]
[4] loadbool   2   0   1    ; false, to [6]
[5] loadbool   2   1   0    ; true
[6] return     2   2      
[7] return     0   1      
; end of function

In  the  above  example,  the  inequality  comparison  is  compiled  into  an  EQ in  line  [2].
Relational expressions always perform the conditional jump for the false path, while for the
true path, the next instruction is executed. Hence the true path is from [2] to [3] to [5]; the
result is true if the EQ comparison evaluates to false, since we are using the ~= operator. This
is because A selects the comparison result to use the true path – in this case we want x ~= y to
return  true  if  the EQ comparison fails,  and selecting “fail”  means A is 0. The false  path
follows the conditional jump, from [2] to [4] to [6]. The C field in the LOADBOOL in line
[4] is set so that line [5], which is part of the true path, can be skipped. In line [6], the boolean
result which is now in temporary register 2 is returned to the caller.

ChunkSpy comments the EQ in line [2] by letting the user know when the conditional jump is
taken. In this case, the jump to the false path is taken when “the value in register 0 equals to
the value in register 1” is true. This is always the opposite of the A field value, which selects
the true path to be taken. Anyway, note that these are Lua code generator conventions, and
there are other ways to code x ~= y in terms of Lua virtual machine instructions.
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For conditional statements, there is no need to set boolean results. So Lua is optimized for
coding the more common conditional statements rather than conditional expressions.

>local x,y; if x ~= y then return "foo" else return "bar" end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "x"  ; 0
.local  "y"  ; 1
.const  "foo"  ; 0
.const  "bar"  ; 1
[1] loadnil    0   1      
[2] eq         1   0   1    ; to [4] if false
[3] jmp        3            ; to [7]
[4] loadk      2   0        ; "foo"
[5] return     2   2      
[6] jmp        2            ; to [9]
[7] loadk      2   1        ; "bar"
[8] return     2   2      
[9] return     0   1      
; end of function

In the above conditional statement, the same inequality operator is used in the source, but the
sense of the EQ instruction in line [2] is now reversed. Since the EQ conditional jump can
only skip the next instruction, additional JMP instructions are needed to allow large blocks of
code to be placed in both true and false paths. In contrast, in the previous example, only a
single instruction is needed to set a boolean value.

The true path (when x ~= y is true) goes from [2] to [4]–[6] and on to [9]. Since there is a
RETURN in line [5], the JMP in line [6] and the RETURN in [9] are never executed at all;
they are redundant but does not adversely affect performance in any way. The false path is
from [2] to [3] to [7] onwards. So in a disassembly listing, you should see the true and false
code blocks in the same order as in the Lua source.

>if 8 > 9 then return 8 elseif 5 >= 4 then return 5 else return 9 end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.const  8  ; 0
.const  9  ; 1
.const  5  ; 2
.const  4  ; 3
[01] lt         0   251 250  ; 9 8, to [3] if true
[02] jmp        3            ; to [6]
[03] loadk      0   0        ; 8
[04] return     0   2      
[05] jmp        7            ; to [13]
[06] le         0   253 252  ; 4 5, to [8] if true
[07] jmp        3            ; to [11]
[08] loadk      0   2        ; 5
[09] return     0   2      
[10] jmp        2            ; to [13]
[11] loadk      0   1        ; 9
[12] return     0   2      
[13] return     0   1      
; end of function

This example is a little more complex, with an elseif, but it is structured in the same order as
the Lua source, so interpreting the disassembled code should not be too hard.
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TEST A B C if (R(B) <=> C) then R(A) := R(B) else pc++ 

Used to implement and and or logical operators, or for testing a single
register in a conditional statement.

Register R(B) is coerced into a boolean and compared to the boolean field
C. If R(B) matches C, the next instruction is skipped, otherwise R(B) is
assigned to R(A) and the VM continues with the next instruction. The and
operator uses a C of 0 (false) while or uses a C value of 1 (true).

TEST is a little more complex than a boolean test and conditional jump combination because
Lua has short-circuit LISP-style logical operators that retains and propagates operand values
instead of booleans. First, we’ll look at how and and or behaves:

>local a,b,c; c = a and b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] loadnil    0   2      
[2] test       2   0   0    ; to [4] if true
[3] jmp        1            ; to [5]
[4] move       2   1      
[5] return     0   1      
; end of function

The  and  operator propagates  false  operands  (which can be  false or nil) because any false
operands in a string of and operations will make the whole boolean expression false. When a
string of and operations evaluates to true, the result is the last operand value.

In line [2], the first operand (the local a) is retained when the test is false (with a field C of 0),
while the jump to [4] is made when the test is true, and then in line [4], the expression result
is set to the second operand (the local b).

>local a,b,c; c = a or b
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] loadnil    0   2      
[2] test       2   0   1    ; to [4] if false
[3] jmp        1            ; to [5]
[4] move       2   1      
[5] return     0   1      
; end of function

The or operator propagates the first true operand, because any true operands in a string of or
operations will  make the whole  boolean expression  true.  When a string of  or  operations
evaluates to false, all operands must have evaluated to false.

In line [2], the local a value is retained if it is true, while the jump is made if it is false. Thus
in line [4], the local b value is the result of the expression if local a evaluates to false.
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Short-circuit logical operators also means that the following Lua code does not actually use a
boolean operation:

>local a,b,c; if a > b and a > c then return a end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] loadnil    0   2      
[2] lt         0   1   0    ; to [4] if true
[3] jmp        3            ; to [7]
[4] lt         0   2   0    ; to [6] if true
[5] jmp        1            ; to [7]
[6] return     0   2      
[7] return     0   1      
; end of function

With short-circuit evaluation, a > c is never executed if a > b is false, so the logic of the Lua
statement can be readily implemented using the normal conditional structure. If both a > b
and a > c are true, the path followed is [2] (the a > b test) to [4] (the a > c test) and finally to
[6], returning the value of a. The TEST instruction is not required.

For a single variable used in the expression part of a conditional statement, TEST is used to
boolean-test the variable:

>if Done then return end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.const  "Done"  ; 0
[1] getglobal  0   0        ; Done
[2] test       0   0   0    ; to [4] if true
[3] jmp        1            ; to [5]
[4] return     0   1      
[5] return     0   1      
; end of function

In line [2], the TEST instruction jumps to the true path if the value in temporary register 0
(from the global  Done) is  true. If the test expression of a conditional statement consist of
purely boolean operators, then a number of TEST instructions will be used in the usual short-
circuit evaluation style:

>if Found and Match then return end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.const  "Found"  ; 0
.const  "Match"  ; 1
[1] getglobal  0   0        ; Found
[2] test       0   0   0    ; to [4] if true
[3] jmp        4            ; to [8]
[4] getglobal  0   1        ; Match
[5] test       0   0   0    ; to [7] if true
[6] jmp        1            ; to [8]
[7] return     0   1      
[8] return     0   1      
; end of function
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In the last example, the true code block of the conditional statement is executed only if both
Found and Match evaluates to true. The path is from [2] (test for Found) to [4] to [5] (test
for Match) to [7] (the true path code block, which is an explicit return statement.)

Finally, here is how Lua’s ternary operator (:?) equivalent works:

>local a,b,c; a = a and b or c
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "a"  ; 0
.local  "b"  ; 1
.local  "c"  ; 2
[1] loadnil    0   2      
[2] test       0   0   0    ; to [4] if true
[3] jmp        2            ; to [6]
[4] test       0   1   1    ; to [6] if false
[5] jmp        1            ; to [7]
[6] move       0   2      
[7] return     0   1      
; end of function

The TEST in line [2] is for the and operator. First, local a is tested in line [2]. If it is false,
then execution continues in [3], jumping to line [6]. Line [6] assigns local c to the end result
because since if a is false, then a and b is false, and false or c is c.

If local a is true in line [2], the TEST instruction makes a jump to line [4], where there is a
second TEST, for the or operator. If b evaluates to true, then the end result is assigned the
value of b, because b or c is b if b is not false. If b is also false, the end result will be c.

For the instructions in line [2], [4] and [6], the target (in field A) is register 0, or the local a,
which is the location where the result of the boolean expression is assigned.
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12  Loop Instructions
Lua has dedicated instructions to implement the two types of for loops, while the other two
types of loops uses traditional test-and-jump.

FORLOOP A sBx R(A)+=R(A+2)
if R(A) <?= R(A+1) then PC+= sBx

Performs an iteration of a numeric for loop. A numeric for loop requires 3
registers on the stack, and each register must be a number. R(A) holds the
initial value and doubles as the loop variable; R(A+1) is the limit; R(A+2) is
the stepping value.

A jump is made back to the start of the loop body if the limit has not been
reached or exceeded. The sense of the comparison depends on whether
the stepping is negative or positive, hence the “<?=” operator. The jump is
encoded as a signed displacement in the sBx field. An empty loop has a
sBx value of -1.

Since a for loop need to perform an initial test prior to the start of the first
iteration, the initial value is given a negative step, i.e. the initial value is
subtracted by the step and the loop starts at a FORLOOP instruction. The
first time FORLOOP is reached, a step is made, thus restoring the initial
value before the first comparison. See the examples for an illustration.

The loop variable ends with the last value before the limit is reached
(unlike C) because it is not updated unless the jump is made. However,
since loop variables are local to the loop itself, you should not be able to
use it unless you cook up an implementation-specific hack.

For the sake of efficiency, FORLOOP contains a lot of functionality, so when a loop iterates,
only one instruction, FORLOOP, is needed. Here is a simple example:

>local a = 0; for i = 1,100,5 do a = a + i end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 4 stacks
.function  0 0 0 4
.local  "a"  ; 0
.local  "i"  ; 1
.local  "(for limit)"  ; 2
.local  "(for step)"  ; 3
.const  0  ; 0
.const  1  ; 1
.const  100  ; 2
.const  5  ; 3
[1] loadk      0   0        ; 0
[2] loadk      1   1        ; 1
[3] loadk      2   2        ; 100
[4] loadk      3   3        ; 5
[5] sub        1   1   3  
[6] jmp        1            ; to [8]
[7] add        0   0   1  
[8] forloop    1   -2       ; to [7] if loop
[9] return     0   1      
; end of function
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In the last example, notice that the for loop causes two additional local pseudo-variables to be
defined,  apart  from the loop index,  i.  The two pseudo-variables,  named  (for  limit) and
(for step) are required to completely specify the state of the loop, along with the loop index,
and are not visible to Lua source code. The three, i, (for limit) and (for step), are arranged in
consecutive registers, with the loop index given by R(A).

The loop body is in line [7] while line [8] is the FORLOOP instruction that steps through the
loop state. The sBx field of FORLOOP is negative, as it always jumps back to the beginning
of the loop body.

Lines [2]–[4] initializes the three register locations where the loop state will be stored. If the
loop step is not specified in the Lua source, a constant 1 is added to the constant pool and a
LOADK instruction is used to initialize the pseudo-variable (for step) with the loop step.

Lines [5]–[6] makes a negative loop step and jumps to line [8] for the initial test to be done.
In the example, at line [6], the loop index i (at register 1) will be (1-5) or -4. When the virtual
machine arrives at the FORLOOP in line [8] for the first time, one loop step is made prior to
the first test, so the value that is actually tested against the limit is (-4+5) or 1. Since 1 < 100,
the conditional jump is made to line [7], starting the first iteration of the loop.

The loop at line  [7]–[8] repeats until  the loop index  i exceeds the loop limit  of 100. The
conditional jump is not taken when that occurs and the loop ends. Beyond the scope of the
loop body, the loop state (i, (for limit) and (for step)) is not valid. This is determined by the
parser and code generator. The range of PC values for which the loop state variables are valid
is located in the locals list. The brief assembly listings generated by ChunkSpy that you are
seeing does not give the startpc and endpc values contained in the locals list. In theory, these
rules can be broken if you write Lua assembly directly.

>for i = 10,1,-1 do if i == 5 then break end end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "i"  ; 0
.local  "(for limit)"  ; 1
.local  "(for step)"  ; 2
.const  10  ; 0
.const  1  ; 1
.const  -1  ; 2
.const  5  ; 3
[01] loadk      0   0        ; 10
[02] loadk      1   1        ; 1
[03] loadk      2   2        ; -1
[04] sub        0   0   2  
[05] jmp        3            ; to [9]
[06] eq         0   0   253  ; 5, to [8] if true
[07] jmp        1            ; to [9]
[08] jmp        1            ; to [10]
[09] forloop    0   -4       ; to [6] if loop
[10] return     0   1      
; end of function

In the second loop example above, except for a negative loop step size, the structure of the
loop is identical. The body of the loop is from line [6] to line [9]. Since no additional stacks
or states are used, a break translates simply to a JMP instruction (line [8]). There is nothing
to clean up after a FORLOOP ends or after a JMP to exit a loop.
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The next instruction, TFORPREP, is largely for compatibility with Lua 4 source code:

TFORPREP A sBx if type(R(A)) == table then
R(A+1):=R(A), R(A):=next;

PC += sBx

Optionally initializes the Lua 4 table form of the generic for loop, for
compatibility. In Lua 5, the elements for the iterated form of the generic for
loop should already be in place (see TFORLOOP below), and the only
thing TFORPREP does is an unconditional jump in order to execute
TFORLOOP for the first time. The sBx field contains the signed
displacement for the jump.

For Lua 4 compatibility, R(A) should be a table. The table is moved to
register R(A+1) as the state, while R(A) is set to the global function next,
which will serve as the iterator function for the generic for loop. After
changing to the Lua 5 form, the unconditional jump is then made.

Apart from a numeric for loop (implemented by FORLOOP), Lua has a generic for loop,
implemented by TFORLOOP:

TFORLOOP A C R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); 
if R(A+2) ~= nil then pc++

Performs an iteration of a generic for loop. A Lua 5-style generic for loop
keeps 3 items in consecutive register locations to keep track of things. R(A)
is the iterator function, which is called once per loop. R(A+1) is the state,
and R(A+2) is the enumeration index. At the start, R(A+2) has an initial
value.

Each time TFORLOOP executes, the iterator function referenced by R(A)
is called with two arguments: the state and the enumeration index (R(A+1)
and R(A+2).) The first return value must be the new value of the
enumeration index, and it is assigned to R(A+2). Additional values may be
returned in consecutive registers after R(A+2), and the field C specifies the
number of additional results. If C is 0, the enumeration index, R(A+2), is
the only returned result.

If the enumeration index becomes nil, then the iterator loop is at an end,
and TFORLOOP skips the next instruction (which is usually a jump to the
beginning of the loop body.)

A generic for loop’s state is also kept in 3 consecutive registers, but the registers contain very
different  things. The iterator function is located in R(A), and is named  (for generator) for
debugging purposes. The state is in R(A+1), and has the name (for state). The enumeration
index is contained in register R(A+2), while  additional results from the iterator function is
placed into R(A+3), R(A+4) and so on.

The number of additional results is given in the C field.  The enumeration index is always
present, and along with additional results, have normal local variable names that are visible to
the programmer. A generic for loop ends when the enumeration index becomes nil.
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This example has a loop with one additional result (v) in addition the loop enumerator (i):

>for i,v in pairs(t) do print(i,v) end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 7 stacks
.function  0 0 0 7
.local  "(for generator)"  ; 0
.local  "(for state)"  ; 1
.local  "i"  ; 2
.local  "v"  ; 3
.const  "pairs"  ; 0
.const  "t"  ; 1
.const  "print"  ; 2
[01] getglobal  0   0        ; pairs
[02] getglobal  1   1        ; t
[03] call       0   2   5  
[04] tforprep   0   4        ; to [9]
[05] getglobal  4   2        ; print
[06] move       5   2      
[07] move       6   3      
[08] call       4   3   1  
[09] tforloop   0       1    ; to [11] if exit
[10] jmp        -6           ; to [5]
[11] return     0   1      
; end of function

Line [1]–[3] prepares register 0 to 3. Note that the call to the pairs standard library function
has 1 parameter and 4 results. After the call in line  [3], register 0 is  the iterator function,
register  1 is  the loop state, register  2 is  the initial value of the enumeration index  i,  and
register 3 is the initial value of the additional result v.

The TFORPREP in line [4] does not do anything for Lua 5-style generic loops; for Lua 5 it is
essentially an unconditional JMP to line [9], where TFORLOOP is encountered for the first
time. Since pairs generate the zeroth enumeration state, the first time TFORLOOP executes,
the first enumeration state of the generic loop is produced. Additional results are generated as
needed. If a loop is to be made, execution continues in the next line, which is a JMP to the
body of the generic loop (lines [5]–[8]). To drop out of the loop, TFORLOOP skips the next
line, continuing to line [11].

repeat and while loops use a standard test-and-jump structure:

>local a = 0; repeat a = a + 1 until a == 10 
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.const  0  ; 0
.const  1  ; 1
.const  10  ; 2
[1] loadk      0   0        ; 0
[2] add        0   0   251  ; 1
[3] eq         0   0   252  ; 10, to [5] if true
[4] jmp        -3           ; to [2]
[5] return     0   1      
; end of function

The body of the repeat  loop is line [2], while the test-and-jump scheme is implemented in
lines [3] and [4]. Two instructions are needed to loop the loop.
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>local a = 1; while a < 10 do a = a + 1 end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.const  1  ; 0
.const  10  ; 1
[1] loadk      0   0        ; 1
[2] jmp        1            ; to [4]
[3] add        0   0   250  ; 1
[4] lt         1   0   251  ; 10, to [6] if false
[5] jmp        -3           ; to [3]
[6] return     0   1      
; end of function

A while  loop is  quite similar  to a  repeat  loop; the body of the loop comes first (line [3])
while  the test-and-jump structure (lines [4] and [5]) is  at the end of the loop body. Since
while does its test at the start of the loop, a JMP (line [2]) is added.

In lparser.c , it is explained that the reason for coding the condition after the loop body is
optimization,  because  one  jump  in  the  loop  is  avoided.  It  is  not  clear  whether  having
condition testing at the start is  slower than having  it  at  the end. The way the  while  code
generator function is  implemented,  with the condition  at  the end,  leads to a limit  to the
complexity of while conditions, about 100 instructions, defined as MAXEXPWHILE. This is
due to a fixed buffer used to temporarily hold the instructions making up the condition.

Here is one way (untested) of implementing condition testing before the body of the loop: 

>local a = 1; while a < 10 do a = a + 1 end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "a"  ; 0
.const  1  ; 0
.const  10  ; 1
[1] loadk      0   0        ; 1
[2] lt         0   0   251  ; 10, to [4] if true
[3] jmp        1            ; to [5]
[4] add        0   0   250  ; 1
[5] jmp        -4           ; to [2]
[6] return     0   1      
; end of function

The sense of the condition test is reversed, while the loop body is at line [4]. Line [3] jumps
out of the while loop, and line [5] jumps back to the condition test to repeat the loop.
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13  Table Creation
There are three instructions for table creation and initialization. A single instruction creates a
table while the other two instructions sets table elements.

NEWTABLE A B C R(A) := {} (size = B,C)

Creates a new empty table at register R(A). B and C are the encoded size
information for the array part and the hash part of the table, respectively.
Appropriate values for B and C are set in order to avoid rehashing when
initially populating the table with values or key-value pairs.

B is a “floating point byte” (so named in lobject.c ), encoded as
mmmmmxxx in binary, where the actual value is: xxx*2^mmmmm. The actual
size of the array is rounded up and then encoded in field B. The parser
increments the array size for every exp field in the table constructor.

C is the log2 value of the size of the hash portion, plus 1 and truncating the
fractional part. E.g. A size of 5 gives (int)(log25 + 1), or 3. The value of 0 is
reserved for a hash size of 0. The parser increments the hash size for
every name=exp field in the table constructor.

Creating an empty table forces both array and hash sizes to be zero:

>local q = {}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "q"  ; 0
[1] newtable   0   0   0    ; array=0, hash=0
[2] return     0   1      
; end of function

In later examples, we will see how the size values are encoded. 

SETLIST A Bx R(A)[Bx-Bx%FPF+i] := R(A+i),
where 1 <= i <= Bx%FPF+1

Sets the values for a range of elements in a table referenced by R(A). Field
Bx contains an encoding of the range of elements to set, while the values
are located in the registers after R(A).

Bx is encoded using a block size, FPF. FPF is “fields per flush”, coded as
LFIELDS_PER_FLUSH in the source file lopcodes.h , with a value of 32.
The remainder Bx%FPF gives the range, where 1 <= i <= Bx%FPF+1,
while the starting index for the table is Bx-Bx%FPF+i. SETLIST always sets
between 1 to FPF elements in a table.

Example: To set indices 33 to 64, Bx will be 63, then Bx%FPF is (63%32)
=31 and the range will be 1 to (31+1)=32, while the starting index, Bx-Bx%
FPF+1 is (63-31+1)=33. Thus indices 33 to 64 will be set, using values
from R(A+1) to R(A+32).
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We’ll start with a simple example:

>local q = {1,2,3,4,5,}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 6 stacks
.function  0 0 0 6
.local  "q"  ; 0
.const  1  ; 0
.const  2  ; 1
.const  3  ; 2
.const  4  ; 3
.const  5  ; 4
[1] newtable   0   5   0    ; array=5, hash=0
[2] loadk      1   0        ; 1
[3] loadk      2   1        ; 2
[4] loadk      3   2        ; 3
[5] loadk      4   3        ; 4
[6] loadk      5   4        ; 5
[7] setlist    0   4        ; index 1 to 5
[8] return     0   1      
; end of function

A table with the reference in register 0 is created in line [1] by NEWTABLE. The array part
of the table has a size of 5, while the hash part has a size of 0. Constants are then loaded into
temporary registers (lines [2] to [6]) before the SETLIST instruction in line [7] assigns each
value to consecutive table elements. SETLIST’s Bx value decodes to a block position of 0 (4
- 4%32) and an index range of 1 to 5. Table values are retrieved from temporary registers 1 to
5, since field A is 0.

Next up is a larger table. Some lines have been removed and ellipsis (...) added to save space.

>local q = {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0, \
>> 1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 33 stacks
.function  0 0 0 33
.local  "q"  ; 0
.const  1  ; 0
.const  2  ; 1
...
.const  0  ; 9
[01] newtable   0   29  0    ; array=40, hash=0
[02] loadk      1   0        ; 1
[03] loadk      2   1        ; 2
[04] loadk      3   2        ; 3
...
[30] loadk      29  8        ; 9
[31] loadk      30  9        ; 0
[32] loadk      31  0        ; 1
[33] loadk      32  1        ; 2
[34] setlist    0   31       ; index 1 to 32
[35] loadk      1   2        ; 3
[36] loadk      2   3        ; 4
[37] loadk      3   4        ; 5
[38] setlist    0   34       ; index 33 to 35
[39] return     0   1      
; end of function

Since FPF is 32, SETLIST works in blocks of 32, and the 35 elements of table q is split into a
block with a range of 1 to 32, and a second block with a range of 33 to 35.
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In line [1], NEWTABLE has a field B value of 29, or 11101 in binary. From the description
of NEWTABLE, xxx  is 1012, while  mmmmm is 112. Thus, the size of the array portion of the
table is  5 x 2^3 or 40. With a maximum value of 7 x 2^31, the floating point  byte is  an
elegant way of encoding a table size.

In line [34], SETLIST has a Bx value of 31. The starting index is (31 - 31%32 + 1) or 1, and
the ending index is (1 + 31%32) or 32. Source register locations are 1 to 32 (field A is 0).

In line [38], SETLIST has a Bx value of 34. The starting index is (34 - 34%32 + 1) or 33, and
the ending index is (33 + 34%32) or 35. Source register locations are 1 to 3 (field A is 0).

Here is a table with hashed elements:

>local q = {a=1,b=2,c=3,d=4,e=5,}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "q"  ; 0
.const  "a"  ; 0
.const  1  ; 1
.const  "b"  ; 2
.const  2  ; 3
.const  "c"  ; 4
.const  3  ; 5
.const  "d"  ; 6
.const  4  ; 7
.const  "e"  ; 8
.const  5  ; 9
[1] newtable   0   0   3    ; array=0, hash=8
[2] settable   0   250 251  ; "a" 1
[3] settable   0   252 253  ; "b" 2
[4] settable   0   254 255  ; "c" 3
[5] settable   0   256 257  ; "d" 4
[6] settable   0   258 259  ; "e" 5
[7] return     0   1      
; end of function

In line [1], NEWTABLE is executed with an array part size of 0 and a hash part size of 8. The
hash size is encoded as an exponent, so from field C, it is calculated as 2^3 = 8. Key-value
pairs  are  set  using  SETTABLE;  SETLIST is  only  for  initializing  array elements.  Using
SETTABLE to initialize the key-value pairs of a table is quite efficient as it can reference the
constant pool directly.

The other table-creation instruction is SETLISTO:

SETLISTO A Bx R(A)[Bx-Bx%FPF+i] := R(A+i),
where A+1 <= A+i <= top of stack

SETLISTO is almost similar to SETLIST except that it is only used for the
last batch of values to be set, when the final element is a function call.
Since the function call can return a variable number of values, SETLISTO
sets the table with all values from R(A+1) up to the top of the stack. The
starting index is still calculated in the same way, as Bx-Bx%FPF+1. Only
the range of elements to be set is now variable.
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The  SETLISTO instruction  is  generated when the final  field  of  a  table  constructor is  a
function. The Lua language specification states that all return results of the function will  be
entered into the table as array elements. SETLISTO is very similar to SETLIST except that
the number of values to be set is up to the top of stack. The Bx field is still used, to specify
the starting table index to be set. Here is an example:

>return {1,2,3,a=1,b=2,c=3,foo()}
; function [0] definition (level 1)
; 0 upvalues, 0 params, 5 stacks
.function  0 0 0 5
.const  1  ; 0
.const  2  ; 1
.const  3  ; 2
.const  "a"  ; 3
.const  "b"  ; 4
.const  "c"  ; 5
.const  "foo"  ; 6
[01] newtable   0   4   2    ; array=4, hash=4
[02] loadk      1   0        ; 1
[03] loadk      2   1        ; 2
[04] loadk      3   2        ; 3
[05] settable   0   253 250  ; "a" 1
[06] settable   0   254 251  ; "b" 2
[07] settable   0   255 252  ; "c" 3
[08] getglobal  4   6        ; foo
[09] call       4   1   0  
[10] setlisto   0   3        ; index 1 to top
[11] return     0   2      
[12] return     0   1      
; end of function

The table is created in line [1] with its reference in register 0, and it has both array and hash
elements to be set. The size of the array part is 4 while  the size of the hash part is also 4.
Their  sizes  are encoded as 4 and 2, respectively,  in  fields  B and C of the NEWTABLE
instruction.

Lines [2]–[4] loads the values for the first 3 array elements. Lines [5]–[7] sets the 3 key-value
pairs for the hashed part of the table. In line [8] and [9], the call to function foo is made, and
then in line [10], the SETLISTO instruction sets the first 3 array elements (in registers 1 to 3,)
plus whatever results returned by the foo function call (from register 4 onwards.) If no results
are returned by the function, the top of stack is at register 3 and only the 3 constant array
elements in the table are set.
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14  Closures and Closing
The final  two instructions of the Lua virtual machine  are a little involved because of the
handling of upvalues. The first is CLOSURE, for instantiating function prototypes:

CLOSURE A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))

Creates an instance (or closure) of a function. Bx is the function number of
the function to be instantiated in the table of function prototypes. This table
is located after the constant table for each function in a binary chunk. The
first function prototype is numbered 0. Register R(A) is assigned the
reference to the instantiated function object.

For each upvalue used by the instance of the function KPROTO[Bx], there
is a pseudo-instruction that follows CLOSURE. Each upvalue corresponds
to either a MOVE or a GETUPVAL pseudo-instruction. Only the B field on
either of these pseudo-instructions are significant.

A MOVE corresponds to local variable R(B) in the current lexical block,
which will be used as an upvalue in the instantiated function. A
GETUPVAL corresponds upvalue number B in the current lexical block.
The VM uses these pseudo-instructions to manage upvalues.

If the function prototype has no upvalues, then CLOSURE is pretty straightforward: Bx has
the function number and R(A) is assigned the reference to the instantiated function object.
However, when an upvalue comes into the picture, we have to look a little more carefully:

>local u; \
>>function p() return u end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "u"  ; 0
.const  "p"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .upvalue  "u"  ; 0
  [1] getupval   0   0        ; u
  [2] return     0   2      
  [3] return     0   1      
  ; end of function

[1] loadnil    0   0      
[2] closure    1   0        ; 1 upvalues
[3] move       0   0      
[4] setglobal  1   0        ; p
[5] return     0   1      
; end of function

In the example,  the  upvalue  is  u,  and  within  the main  chunk  there  is  a  single  function
prototype (indented in  the listing  above for clarity.) In the top-level  function,  line  [2], the
closure is made. In line [4] the function reference is saved into global p. Line [3] is a part of
the CLOSURE instruction  (it  not  really  an actual  MOVE,)  and its  B field  specifies  that
upvalue number 0 in the closed function is really local u in the enclosing function.
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Here is another example, with 3 levels of function prototypes:

>local m \
>>function p() \
>>  local n \
>>  function q() return m,n end \
>>end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 2 stacks
.function  0 0 0 2
.local  "m"  ; 0
.const  "p"  ; 0

  ; function [0] definition (level 2)
  ; 1 upvalues, 0 params, 2 stacks
  .function  1 0 0 2
  .local  "n"  ; 0
  .upvalue  "m"  ; 0
  .const  "q"  ; 0

    ; function [0] definition (level 3)
    ; 2 upvalues, 0 params, 2 stacks
    .function  2 0 0 2
    .upvalue  "m"  ; 0
    .upvalue  "n"  ; 1
    [1] getupval   0   0        ; m
    [2] getupval   1   1        ; n
    [3] return     0   3      
    [4] return     0   1      
    ; end of function

  [1] loadnil    0   0      
  [2] closure    1   0        ; 2 upvalues
  [3] getupval   0   0        ; m
  [4] move       0   0      
  [5] setglobal  1   0        ; q
  [6] return     0   1      
  ; end of function

[1] loadnil    0   0      
[2] closure    1   0        ; 1 upvalues
[3] move       0   0      
[4] setglobal  1   0        ; p
[5] return     0   1      
; end of function

First, look at the top-level function and the level 2 function – there is one upvalue, m. In the
top-level  function,  the  closure  in  line  [2]  has one more instruction  following  it,  for  the
upvalue m. This is similar to the previous example.

Next, compare the level 2 function and the level 3 function – now there are two upvalues, m
and n. The m upvalue is found 2 levels up.  In the level 2 function, the closure in line [2] has
two instructions following it. The first is for upvalue number 0 (m) – it uses GETUPVAL to
indicate that the upvalue is one or more level lower down. The second is for upvalue number
1 (n) – it uses MOVE which indicate that the upvalue is in the same level as the CLOSURE
instruction. For both of these pseudo-instructions, the B field is used to point  either to the
upvalue or local  in  question.  The Lua virtual  machine  uses this  information (CLOSURE
information and upvalue lists) to manage upvalues; for the programmer, upvalues just works.
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Our last instruction also deals with upvalues:

CLOSE A close all variables in the stack up to (>=) R(A)

Closes all local variables in the stack from register R(A) onwards. This
instruction is only generated if there is an upvalue present within those
local variables. It has no effect if a local isn’t used as an upvalue.

If a local is used as an upvalue, then the local variable need to be placed
somewhere, otherwise it will go out of scope and disappear when a lexical
block enclosing the local variable ends. CLOSE performs this operation for
all affected local variables for do end blocks or loop blocks. RETURN also
does an implicit CLOSE when a function returns.

It is easier to understand with an example:

>do \
>>  local p,q \
>>  r = function() return p,q end \
>>end
; function [0] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
.function  0 0 0 3
.local  "p"  ; 0
.local  "q"  ; 1
.const  "r"  ; 0

  ; function [0] definition (level 2)
  ; 2 upvalues, 0 params, 2 stacks
  .function  2 0 0 2
  .upvalue  "p"  ; 0
  .upvalue  "q"  ; 1
  [1] getupval   0   0        ; p
  [2] getupval   1   1        ; q
  [3] return     0   3      
  [4] return     0   1      
  ; end of function

[1] loadnil    0   1      
[2] closure    2   0        ; 2 upvalues
[3] move       0   0      
[4] move       0   1      
[5] setglobal  2   0        ; r
[6] close      0  
[7] return     0   1      
; end of function

p and q are local to the do end block, and they are upvalues as well. The global r is assigned
an anonymous function that has p and q as upvalues. When p and q go out of scope at the end
of the do end block, both variables have to be put somewhere because they are part of the
environment of the function instantiated in r. This is where the CLOSE instruction comes in.

In the top-level function, the CLOSE in line [6] makes the virtual machine find all affected
locals (they have to be open upvalues,) take them out of the stack, and place them in a safe
place so that they do not disappear when the block or function goes out of scope. A RETURN
instruction does an implicit CLOSE so the latter won’t appear very often in listings.
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15  Digging Deeper
For studying larger snippets of Lua code and its disassembly, you can try ChunkSpy’s various
disassembly functions. Both vmmerge5 and ChunkSpy can merge source code lines into a
disassembly listing. ChunkSpy can provide more detail,  because it  processes every bit  of a
binary chunk.

A good way of studying how any instruction functions is to find where its opcode appears in
the Lua sources. For example, to see what MOVE does, look for OP_MOVE in lparser.c
(the parser), lcode.c  (the code generator) and lvm.c  (the virtual machine.) From the code
implementing  OP_MOVE, you can then move deeper into the code by following  function
calls.  I  found  this  approach  (bottoms  up,  following  the  execution  path  from  generated
opcodes to the functions that performs code generation) is a little easier than following the
recursive descent parser’s call graph. Once you have lots of little pictures, the big picture will
form on its own.

I hope you have enjoyed, as I did, poking your way through the internal organs of this Lua
thingy. Now that the Lua internals seem less magical and more practical,  I look forward to
some Dr Frankenstein experiments with my newfound knowledge...
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17  ChangeLog & ToDos
Changes:

20050106 Typo. Fixed Size of Instruction field on page 7, to 4 bytes (was 8 bytes.)

ToDos:• Rici Lake provided some very useful comments, including information on changes in the
upcoming Lua 5.1. When Lua 5.1 is released, this document will be revised.
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