

This is a basic introduction to the variable types used by Lua when scripting. Each section introduces a different variable type. Please look at TutorialExamples
for notes about the examples.

Numbers

Lua allows simple arithmetic using the usual operators to add, subtract, multiple and divide. We'll use the print() function to print out the results of some
calculations. The brackets around the arguments are important and will cause an error if missed out.

> print(2+2)
4
> print(2-7)
-5
> print(7*8)
56
> print(7/8)
0.875

Notice that the numbers are not rounded into integers. They are floating point, or real numbers. We can assign values to variables using the = operator.

> x = 7
> print(x)
7

The variable x is created when the number 7 is assigned to it. We use the print() function again to print out the value of x. We can now use the value in x for
other calculations.

> x = x * 9
> print(x)
63
> print(x*2) -- will not change the value of x
126
> print(x)
63

Lua Types Tutorial
wiki

Seite 1 von 5lua-users wiki: Lua Types Tutorial

23.04.2004http://lua-users.org/wiki/LuaTypesTutorial

Notice how print(x*2) does not change the value of x because it was not assigned using the = but x = x * 9 multiples the current value of x by 9 and stores
the new value in x again.

For more information on Lua's number type you can look at the NumbersTutorial.

Strings

Lua also uses strings, or text variable types:

> print("hello")
hello

We can assign strings to variables just like we can numbers:

> who = "Lua user"
> print(who)
Lua user

We can concatenate (join together) strings together using the .. operator between two strings.

> print("hello ")
hello
> print("hello " .. who) -- the variable "who" was assigned above
hello Lua user
> print(who)
Lua user

Notice that the .. operator does not change the value of who unless the = assignment operator is used, just like numbers.

> message = "hello " .. who
> print(message)
hello Lua user

Unlike some other languages, you can not use the + operator to concatenate strings. i.e.:

> message = "hello " + who
stdin:1: attempt to perform arithmetic on a string value
stack traceback:
 stdin:1: in main chunk
 [C]: ?

Seite 2 von 5lua-users wiki: Lua Types Tutorial

23.04.2004http://lua-users.org/wiki/LuaTypesTutorial

Tables

Lua also has a general purpose data type called a table. Tables can be used to store groups of objects. You can store numbers, or strings, or other tables in tables.
Tables are created using a pair of curly brackets {} . Let's create an empty table:

> x = {}
> print(x)
table: 0035C910

When we display the value of a table variable using the built in print function Lua just displays the fact that variable is a table, and unique identifier for that
table (i.e. its address in memory). We can print out the contents of a table but that comes in the TablesTutorial.

We can construct tables containing other objects, such as the numbers and strings described above, e.g.

> x = { value = 123, text = "hello" }
> print(x.value)
123
> print(x.text)
hello

We can print the values out using the notation: table.item. We can also put tables inside other tables.

> y = { const={ name="Pi", value=3.1415927 }, const2={ name="light speed", value=3e8 } }
> print(y.const.name)
Pi
> print(y.const2.value)
300000000

Boolean

Boolean values have either the value true or false. If a value is not true, it must be false and vice versa. The not operator can be placed before a boolean value
to invert it. i.e. not true is equal to false.

> x = true
> print(x)
true
> print(not x)
false
> print(not false)

Seite 3 von 5lua-users wiki: Lua Types Tutorial

23.04.2004http://lua-users.org/wiki/LuaTypesTutorial

true

Boolean values are used to represent the results of logic tests. The equals ==, and not equals ~= operators will return boolean values depending on the values
supplied to them.

> print(1 == 0) -- test whether two numbers are equal
false
> print(1 == 1)
true
> print(1 ~= 0) -- test whether two numbers are not equal
true
> print(true ~= false) -- is true not equal to false?
true

Functions

In Lua, functions are assigned to variables, just like numbers and strings. Functions are created using the function keyword. Here we create a simple function
which will print a friendly message.

> function foo() print("hello") end -- declare the function
> foo() -- call the function
hello
> print(foo) -- get the value of the variable "foo"
function: 0035D6E8

Notice we can print the value of the variable foo and it displays (like tables) that the variable is a function, and has unique identifier for that particular function.
So, being a variable just like any other, we should be able to assign functions to variables, just like the other variables, and we can.

> x = function() print("hello") end
> x()
hello
> print(x)
function: 0035EA20

The ability to do this is because Lua has first class values . This means that all values are treated the same way. This is a very powerful and useful feature of Lua.

Dynamic typing

You might have noticed that whilst we created the above variables, we did not have to specify which type of variable we were creating. For example,

Seite 4 von 5lua-users wiki: Lua Types Tutorial

23.04.2004http://lua-users.org/wiki/LuaTypesTutorial

a = 1
b = "hello"
c = { item1="abc" }

In other languages, such as C, we have to specify the type of a variable when we create it. As well as not having to specify which type a particular variable is we
can also assign different value types to the same variable, e.g.

a = 1
a = "hello"
a = { item1="abc" }

This is called dynamic typing. This means that you don't have to specify what type a variable is. The variable knows what type it is from the value, or object,
assigned to it.

nil values

This is a special value which means a variable has no value. If a variable has the value nil then it has no value assigned to it and therefore will no longer exist
(or doesn't exist yet). By setting a variable to nil you can delete a variable. e.g.

> x = 2.5
> print(x)
2.5
> x = nil
> print(x)
nil

You can test to see if a variable exists by checking whether its value is nil.

> print(x == nil)
true
> x = 7
> print(x == nil)
false
> print(x)
7

FindPage · RecentChanges · preferences
edit · history
Last edited February 17, 2004 9:46 am PDT (diff)

Seite 5 von 5lua-users wiki: Lua Types Tutorial

23.04.2004http://lua-users.org/wiki/LuaTypesTutorial

